日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠ACB為銳角,動點(diǎn)D(異于點(diǎn)B)在射線BC上,連接AD,以AD為邊在AD的右側(cè)作正方形ADEF,連接CF.
          (1)若AB=AC,∠BAC=90°那么
          ①如圖一,當(dāng)點(diǎn)D在線段BC上時(shí),線段CF與BD之間的位置、大小關(guān)系是________(直接寫出結(jié)論)
          ②如圖二,當(dāng)點(diǎn)D在線段BC的延長上時(shí),①中的結(jié)論是否仍然成立?請說明理由.
          (2)若AB≠AC,∠BAC≠90°.點(diǎn)D在線段BC上,那么當(dāng)∠ACB等于多少度時(shí)?線段CF與BD之間的位置關(guān)系仍然成立.請畫出相應(yīng)圖形,并說明理由.

          (1)①CF=BD CF⊥BD,
          解:結(jié)論還成立,CF=BD CF⊥BD,
          理由是:∵四邊形ADEF是正方形,
          ∴AD=AF,∠DAF=90°,
          ∵∠BAC=90°,
          ∴∠BAC-∠DAC=∠DAF-∠DAC,
          ∴∠BAD=∠CAF,
          ∵在△BAD和△CAF中
          ,
          ∴△BAD≌△CAF,
          ∴CF=BD,∠B=∠ACF,
          ∵∠BAC=90°,
          ∴∠B+∠BCA=90°,
          ∴∠ACF+∠ACB=90°,
          ∴CF⊥BD,
          故答案為:CF=BD,CF⊥BD.

          ②解:結(jié)論還成立,
          理由是由①知,∠BAC=FAD=90°,
          ∴∠BAC+∠CAD=∠FAD+∠CAD,
          ∴∠BAD=∠FAC,
          ∵在△BAD和△CAF中
          ,
          ∴△BAD≌△CAF,
          ∴CF=BD,∠B=∠ACF,
          ∵∠BAC=90°,
          ∴∠B+∠BCA=90°,
          ∴∠ACF+∠ACB=90°,
          ∴CF⊥BD,
          即①的結(jié)論還成立.

          (2)解:當(dāng)∠ACB=45°時(shí),CF⊥BD
          理由是:如圖1,當(dāng)∠BAC>90°,過點(diǎn)A作AM⊥CA交BC于M,
          則AM=AC,
          由(1)同理可證明△FAC≌△MAD,
          ∴∠ACF=∠AMD=45°,
          ∴∠FCB=90°,
          即CF⊥BD.
          分析:(1)①根據(jù)正方形和等邊三角形的性質(zhì)得出AD=AF,∠BAC=∠DAF=90°,求出∠BAD=∠CAF,證△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;
          ②求出∠BAD=∠CAF,證△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;
          (2)在BD上截取AM=AC,連接AM,與(1)證明過程類似證MAD≌△CAF即可求出答案.
          點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定,正方形的性質(zhì),主要培養(yǎng)學(xué)生的推理能力,本題具有一定的代表性,證明過程類似,透過做此題培養(yǎng)了學(xué)生的發(fā)散思維能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為(  )
          A、10B、5C、6D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AC=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在△ABC中,AC與⊙O相切于點(diǎn)A,AC=AB=2,⊙O交BC于D.
          (1)∠C=
          45
          45
          °;
          (2)BD=
          2
          2

          (3)求圖中陰影部分的面積(結(jié)果用π表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
          45
          ,以CA為半徑的⊙C與AB、BC分別交于點(diǎn)D、E,聯(lián)結(jié)AE,DE.
          (1)求BC的長;
          (2)求△AED的面積.

          查看答案和解析>>

          同步練習(xí)冊答案