日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,DE分別是AC、AB上的點,BDCE相交于點O,給出四個條件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO④BE=CD.上述四個條件中,選擇兩個可以判定△ABC是等腰三角形的方法有( 。

          A.2B.3C.4D.6

          【答案】C

          【解析】

          ①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:證△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:證△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:證△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.

          解:有①②①③,②④③④,共4種,

          ①②,

          理由是:∵OB=OC,

          ∴∠OBC=∠OCB,

          ∵∠EBO=∠DCO,

          ∴∠EBO+∠OBC=∠DCO+∠OCB,

          ∠ABC=∠ACB,

          ∴AB=AC,

          △ABC是等腰三角形;

          ①③,

          理由是:△EBO△DCO ,

          ∴△EBO≌△DCO

          ∴∠EBO=∠DCO,

          ∵∠OBC=∠OCB(已證),

          ∴∠EBO+∠OBC=∠DCO+∠OCB

          ∠ABC=∠ACB,

          AB=AC

          ∴△ABC是等腰三角形;

          ②④

          理由是:△EBO△DCO,

          ∴△EBO≌△DCO,

          ∴OB=OC,

          ∴∠OBC=∠OCB

          ∴∠EBO+∠OBC=∠DCO+∠OCB,

          ∠ABC=∠ACB

          AB=AC,

          ∴△ABC是等腰三角形;

          ③④

          理由是:△EBO△DCO,

          ∴△EBO≌△DCO

          ∴∠EBO=∠DCO,OB=OC,

          ∴∠OBC=∠OCB,

          ∴∠EBO+∠OBC=∠DCO+∠OCB

          ∠ABC=∠ACB,

          AB=AC

          ∴△ABC是等腰三角形;

          故選C

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為αα90°),若∠1=110°,則∠α=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP2,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=(

          A. 30°B. 45°C. 60°D. 15°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】垃圾不落地,城市更美麗.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生是否隨手丟垃圾這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.

          請你根據(jù)以上信息,解答下列問題:

          (1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

          (2)所抽取學生是否隨手丟垃圾情況的眾數(shù)是   

          (3)若該校七年級共有1500名學生,請你估計該年級學生中經常隨手丟垃圾的學生約有多少人?談談你的看法?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】中,,點上一點.

          1)如圖平分.求證:;

          2)如圖,點在線段上,且,求證:

          3)如圖,過點作的延長線于點,連接,過點作,求證:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PEACEQBC延長線上一點,當PACQ時,連PQAC邊于D,則DE的長為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知直線lAC:y=﹣x軸、y軸分別為A、C兩點,直線BCACx軸于點B.

          (1)求點B的坐標及直線BC的解析式;

          (2)將△OBC關于BC邊翻折,得到△O′BC,過點O′作直線O′E垂直x軸于點E,F(xiàn)y軸上一點,P是直線O′E上任意一點,P、Q兩點關于x軸對稱,當|PA﹣PC|最大時,請求出QF+FC的最小值;

          (3)M是直線O′E上一點,且QM=3,在(2)的條件下,在平面直角坐標系中,是否存在點N,使得以Q、F、M、N四點為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點PPQAB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉90°,得到線段PR,連接QR.設PQRABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

          (1)當點R與點B重合時,求t的值;

          (2)當點PBC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);

          (3)當點R落在ABCD的外部時,求St的函數(shù)關系式;

          (4)直接寫出點P運動過程中,PCD是等腰三角形時所有的t值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】有一家糖果加工廠,它們要對一款奶糖進行包裝,要求每袋凈含量為100g.現(xiàn)使用甲、乙兩種包裝機同時包裝100g的糖果,從中各抽出10袋,測得實際質量(g)如下:

          甲:101102,99,100,98,103,100,98,100,99

          乙:100101,100,98,101,97100,98,103,102

          1)分別計算兩組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

          2)要想包裝機包裝奶糖質量比較穩(wěn)定,你認為選擇哪種包裝機比較適合?簡述理由.

          查看答案和解析>>

          同步練習冊答案