日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.如圖1,正方形ABCD的邊AD在y軸上,拋物線y=a(x-2)2-1經(jīng)過點(diǎn)A、B,與x相交于點(diǎn)E、F,且其頂點(diǎn)M在CD上.
          (1)請(qǐng)直接寫出點(diǎn)A的坐標(biāo)(0,3),并寫出a的值2;
          (2)若點(diǎn)P是拋物線上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),過點(diǎn)P作y軸的平行線l與直線AB交于點(diǎn)G,與直線BD交于點(diǎn)H,如圖2.
          ①當(dāng)線段PH=2GH時(shí),求點(diǎn)P的坐標(biāo);
          ②當(dāng)點(diǎn)P在直線BD下方時(shí),點(diǎn)K在直線BD上,且滿足△KPH∽△AEF,求△KPH周長的最大值.

          分析 (1)根據(jù)拋物線的對(duì)稱性、拋物線的頂點(diǎn)坐標(biāo)以及正方形四邊都相等的性質(zhì)解答;
          (2)①根據(jù)待定系數(shù)法可得直線BD的解析式,設(shè)點(diǎn)P的坐標(biāo)為(x,x2-4x+3),則點(diǎn)H(x,x-1),點(diǎn)G(x,3).分三種情況:i)當(dāng)x≥1且x≠4時(shí);ii)當(dāng)0<x<1時(shí);iii)當(dāng)x<0時(shí);三種情況討論可得點(diǎn)P的坐標(biāo);
          ②根據(jù)相似三角形的性質(zhì)可得S△KPH=$\frac{3}{4}$PH2=$\frac{3}{4}$(-x2+5x-4)2,再根據(jù)二次函數(shù)的增減性可得△KPH面積的最大值.

          解答 解:(1)如圖1,∵拋物線的解析式為y=a(x-2)2-1,頂點(diǎn)是M,
          ∴M(2,-1).
          又∵四邊形ABCD是正方形,
          ∴OD=1,DC=BC=AB=AD=4,
          ∴A(0,3).
          把A(0,3)代入y=a(x-2)2-1,得
          3=a(0-2)2-1,
          解得a=2.
          故答案是:(0,3);2;

          (2)①設(shè)直線BD的解析式為y=kx+b(k≠0),由于直線BD經(jīng)過D(0,-1),B(4,3),
          則$\left\{\begin{array}{l}{-1=b}\\{3=4k+b}\end{array}\right.$,
          解得$\left\{\begin{array}{l}{k=1}\\{b=-1}\end{array}\right.$,
          故直線BD的解析式為y=x-1.
          設(shè)點(diǎn)P的坐標(biāo)為(x,x2-4x+3),則點(diǎn)H(x,x-1),點(diǎn)G(x,3).
          i)當(dāng)x≥1且x≠4時(shí),點(diǎn)G在PH的延長線上,如圖2.
          ∵PH=2GH,
          ∴(x-1)-(x2-4x+3)=2[3-(x-1)],
          ∴x2-7x+12=0,
          解得x1=3,x2=4.
          當(dāng)x2=4時(shí),點(diǎn)P,H,G重合于點(diǎn)B,舍去.
          ∴x=3.
          ∴此時(shí)點(diǎn)P的坐標(biāo)為(3,0).         

          ii)當(dāng)0<x<1時(shí),點(diǎn)G在PH的反向延長線上,如圖3,PH=2GH不成立.
          iii)當(dāng)x<0時(shí),點(diǎn)G在線段PH上,如圖4.
          ∵PH=2GH,
          ∴(x2-4x+3)-(x-1)=2[3-(x-1)],
          ∴x2-3x-4=0,解得x1=-1,x2=4(舍去),
          ∴x=-1.此時(shí)點(diǎn)P的坐標(biāo)為(-1,8).
          綜上所述可知,點(diǎn)P的坐標(biāo)為(3,0)或(-1,8).      

          ②如圖5,令x2-4x+3=0,得x1=1,x2=3,
          ∴E(1,0),F(xiàn)(3,0),
          ∴EF=2.
          ∴S△AEF=$\frac{1}{2}$EF•OA=3.      
          ∵△KPH∽△AEF,
          ∴$\frac{{S}_{△KPH}}{{S}_{△AEF}}$=($\frac{PH}{EF}$)2,
          ∴S△KPH=$\frac{3}{4}$PH2=$\frac{3}{4}$(-x2+5x-4)2.  
          ∵1<x<4,
          ∴當(dāng)x=$\frac{5}{2}$時(shí),S△KPH的最大值為$\frac{243}{64}$.

          點(diǎn)評(píng) 本考查了二次函數(shù)綜合題.涉及的知識(shí)點(diǎn)有:坐標(biāo)軸上的點(diǎn)的坐標(biāo)特征,拋物線的頂點(diǎn)式,矩形的性質(zhì),待定系數(shù)法求直線的解析式,相似三角形的性質(zhì),二次函數(shù)的增減性,分類思想,綜合性較強(qiáng),有一定的難度.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          12.已知函數(shù)y=$\frac{1}{-\sqrt{3}x+1}$,當(dāng)x=$\frac{2\sqrt{3}}{3}$時(shí).對(duì)應(yīng)的函數(shù)值為-1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          13.求下列各式中的x的值
          (1)4x2-81=0
          (2)(x-3)2=$\frac{16}{25}$
          (3)8(x-1)3+27=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          10.在6張相同的紙條上分別標(biāo)注數(shù)字1~6,洗勻后從中任意抽取1張.
          (1)抽到的紙條上的數(shù)可能是1或偶數(shù)嗎?可能是0或8嗎?
          (2)抽到的紙條上的數(shù)可能有哪些?你能事先確定出現(xiàn)哪一種結(jié)果嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          2.如圖,已知等邊△ABC,點(diǎn)E在邊AC上,點(diǎn)D在邊BC上,且AE=CD,連接AD、BE相交于點(diǎn)G,過點(diǎn)B作BF⊥AD于點(diǎn)F,△ABG和△MBG關(guān)于直線BG對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)M),BM與AD相交于點(diǎn)H.已知AG=3,GH=2,則GE=1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          12.如圖,⊙A、⊙B、⊙C的半徑都是2cm,則圖中三個(gè)扇形的面積的和為(結(jié)果保留π)2π.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          19.已知線段AB=6cm,在直線AB上畫線BC,使BC=11cm,則線段AC=(  )
          A.17cmB.5cmC.11cm或5cmD.5cm或17cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          16.如圖,△ABC中,∠C=90°,邊AB的垂直平分線交AB、AC邊分別為點(diǎn)D,點(diǎn)E,連結(jié)BE.
          (1)若∠A=40°,求∠CBE的度數(shù).
          (2)若AB=10,BC=6,求△BCE的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          17.某市教育局為了了解初二學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分初二學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖)

          請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:
          (1)a=25%;
          (2)補(bǔ)全條形統(tǒng)計(jì)圖;
          (3)求實(shí)踐天數(shù)為5天對(duì)應(yīng)扇形的圓心角度數(shù);
          (4)如果該市有初二學(xué)生20000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于5天”的大約有多少人?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案