日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.求證:CE=CF;

          (2)如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.

          (3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:

          如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面積.

           

          【答案】

          (1)、(2)證明見解析(3)108

          【解析】解:(1)證明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,

          ∴△CBE≌△CDF(SAS)。∴CE=CF。

          (2)證明: 如圖,延長AD至F,使DF=BE.連接CF。

           由(1)知△CBE≌△CDF,

          ∴∠BCE=∠DCF。

          ∴∠BCE+∠ECD=∠DCF+∠ECD,

          即∠ECF=∠BCD=90°。

          又∠GCE=45°,∴∠GCF=∠GCE=45°。

          ∵CE=CF,∠GCE=∠GCF,GC=GC,

          ∴△ECG≌△FCG(SAS)。∴GE=GF,

          ∴GE=DF+GD=BE+GD。

          (3)如圖,過C作CG⊥AD,交AD延長線于G.

          在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°。

          又∠CGA=90°,AB=BC,

          ∴四邊形ABCD 為正方形。 ∴AG=BC。

          已知∠DCE=45°,

          根據(jù)(1)(2)可知,ED=BE+DG。

          ∴10=4+DG,即DG=6。

          設(shè)AB=x,則AE=x-4,AD=x-6,

          在Rt△AED中,∵DE2=AD2+AE2,即102=(x-6)2+(x-4)2

          解這個(gè)方程,得:x=12或x=-2(舍去)。

          ∴AB=12。

          。

          ∴梯形ABCD的面積為108。

          (1)由四邊形是ABCD正方形,易證得△CBE≌△CDF(SAS),即可得CE=CF。

          (2)延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,易證得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可證得△ECG≌△FCG,從而可得GE=BE+GD。

          (3)過C作CG⊥AD,交AD延長線于G,易證得四邊形ABCG為正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的長,設(shè)AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的長,從而求得直角梯形ABCD的面積。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          點(diǎn)P是x軸正半軸的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PA交雙曲線y=
          1
          x
          于點(diǎn)A,連接OA.
          (1)如圖甲,當(dāng)點(diǎn)P在x軸的正方向上運(yùn)動(dòng)時(shí),Rt△AOP的面積大小是否變化?若不變,請求出Rt△AOP的面積;若改變,試說明理由;
          (2)如圖乙,在x軸上的點(diǎn)P的右側(cè)有一點(diǎn)D,過點(diǎn)D作x軸的垂線交雙曲線于點(diǎn)B,連接BO交AP于點(diǎn)C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
          S2(選填“>”、“<”、“=”);
          (3)如圖丙,AO的延長線與雙曲線y=
          1
          x
          的另一個(gè)交點(diǎn)為F,F(xiàn)H垂直于x軸,垂足為點(diǎn)H,連接AH,PF,試證明四邊形APFH的面積為一個(gè)常數(shù).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是x軸正半軸的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PA交雙曲線y=
          1x
          于點(diǎn)A,連接OA.
          精英家教網(wǎng)
          (1)如圖甲,當(dāng)點(diǎn)P在x軸的正方向上運(yùn)動(dòng)時(shí),Rt△AOP的面積大小是否變化答:
           
          (請?zhí)睢白兓被颉安蛔兓保?BR>若不變,請求出Rt△AOP的面積=
           
          ;若改變,試說明理由(自行思索,不必作答);
          (2)如圖乙,在x軸上的點(diǎn)P的右側(cè)有一點(diǎn)D,過點(diǎn)D作x軸的垂線交雙曲線于點(diǎn)B,連接BO交AP于C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
           
          S2(請?zhí)睢埃尽、“<”或?”).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•深圳)如圖1,直線AB過點(diǎn)A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
          (1)m為何值時(shí),△OAB面積最大?最大值是多少?
          (2)如圖2,在(1)的條件下,函數(shù)y=
          k
          x
          (k>0)
          的圖象與直線AB相交于C、D兩點(diǎn),若S△OCA=
          1
          8
          S△OCD
          ,求k的值.
          (3)在(2)的條件下,將△OCD以每秒1個(gè)單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請求出S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式(0<t<10).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•錫山區(qū)一模)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B坐標(biāo)分別為(8,4),(0,4),線段CD在于x軸上,CD=3,點(diǎn)C從原點(diǎn)出發(fā)沿x軸正方向以每秒1個(gè)單位長度向右平移,點(diǎn)D隨著點(diǎn)C同時(shí)同速同方向運(yùn)動(dòng),過點(diǎn)D作x軸的垂線交線段AB于點(diǎn)E,交OA于點(diǎn)G,連接CE交OA于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)E點(diǎn)到達(dá)A點(diǎn)時(shí),停止所有運(yùn)動(dòng).

          (1)求線段CE的長;
          (2)記S為Rt△CDE與△ABO的重疊部分面積,試寫出S關(guān)于t函數(shù)關(guān)系式及t的取值范圍;
          (3)如圖2,連接DF,
          ①當(dāng)t取何值時(shí),以C,F(xiàn),D為頂點(diǎn)的三角形為等腰三角形?
          ②直接寫出△CDF的外接圓與OA相切時(shí)t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在向紅星鎮(zhèn)居民介紹王家莊位置的時(shí)候,我們可以這樣說:如圖1,在以紅星鎮(zhèn)為原點(diǎn),正東方向?yàn)閤軸正方向,正北方向?yàn)閥軸正方向的平面直角坐標(biāo)系(1單位長度表示的實(shí)際距離為1km)中,王家莊的坐標(biāo)為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向
          50
          km的地方.

          還有一種方法廣泛應(yīng)用于航海、航空、氣象、軍事等領(lǐng)域.如圖2:在紅星鎮(zhèn)所建的雷達(dá)站O的雷達(dá)顯示屏上,把周角每15°分成一份,正東方向?yàn)?°,相鄰兩圓之間的距離為1個(gè)單位長度(1單位長度表示的實(shí)際距離為1km),現(xiàn)發(fā)現(xiàn)2個(gè)目標(biāo),我們約定用(10,15°)表示點(diǎn)M在雷達(dá)顯示器上的坐標(biāo),則:
          (1)點(diǎn)N可表示為
          (8,135°)
          (8,135°)
          ;王家莊位置可表示為
          50
          ,45°)
          50
          ,45°)
          ;點(diǎn)N關(guān)于雷達(dá)站點(diǎn)0成中心對(duì)稱的點(diǎn)P的坐標(biāo)為
          (8,315°)
          (8,315°)

          (2)S△OMP=
          20
          2
          20
          2
          ;
          (3)若有一家大型超市A在圖中(4,30°)的地方,請直接標(biāo)出點(diǎn)A,并將超市A與雷達(dá)站O連接,現(xiàn)準(zhǔn)備在雷達(dá)站周圍建立便民服務(wù)店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點(diǎn)在雷達(dá)顯示屏上的坐標(biāo).
          (4,270°)或(4,150°)或(4
          3
          ,0°)或(4
          3
          ,60°).
          (4,270°)或(4,150°)或(4
          3
          ,0°)或(4
          3
          ,60°).

          查看答案和解析>>

          同步練習(xí)冊答案