日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀下列材料:

          我們給出如下定義:數(shù)軸上給定兩點,以及一條線段,若線段的中點在線段上(點可以與點重合),則稱點與點關(guān)于線段徑向?qū)ΨQ.下圖為點與點關(guān)于線段徑向?qū)ΨQ的示意圖.

          解答下列問題:

          如圖1,在數(shù)軸上,點為原點,點表示的數(shù)為-1,點表示的數(shù)為2.

          1)①點,分別表示的數(shù)為-3,3,在,,三點中, 與點關(guān)于線段徑向?qū)ΨQ;

          ②點表示的數(shù)為,若點與點關(guān)于線段徑向?qū)ΨQ,則的取值范圍是

          2)在數(shù)軸上,點,,表示的數(shù)分別是-5,-4,-3,當點以每秒1個單位長度的速度向正半軸方向移動時,線段同時以每秒3個單位長度的速度向正半軸方向移動.設(shè)移動的時間為)秒,問為何值時,線段上至少存在一點與點關(guān)于線段徑向?qū)ΨQ.

          【答案】1)①點C和點D;②1x5;(2

          【解析】

          (1)根據(jù)題干中給出的徑向?qū)ΨQ的定義,進行驗證解答即可;

          (2)根據(jù)題干中給出的徑向?qū)ΨQ的定義,列出點x與點A中點的取值范圍,即可求出答案;

          (3)用含t的代數(shù)式分別表示出點H,K,L和線段HK與線段HL的中點列式計算即可.

          解:(1)①與點A點關(guān)于線段徑向?qū)ΨQ需要滿足:這個點與A點的中點在線段OM上,點B表示的數(shù)是-3,與點A表示的-1的中點是-2,不在線段OM上,所以點B不是;點C表示的數(shù),與點A表示的-1的中點是,在線段OM上,所以點C是;點D表示的3與點A表示的-1的中點是1,在線段OM上,所以點D是;

          綜上,答案為點C,點D;

          結(jié)合數(shù)軸可知當點x與點A的中點落在點O與點M之間時(包括端點O與M)符合題意,即,解得,故答案為;

          (2)解:移動時間t(t>0)秒時,點H,K,L表示的數(shù)分別是-5+t,-4+3t,-3+3t,

          此時,線段HK的中點設(shè)為R1,表示的數(shù)為,

          線段HL的中點設(shè)為R2,表示的數(shù)為,

          當線段R1 R2,在線段OM上運動時,線段KL上至少存在一點與點H關(guān)于線段OM徑向?qū)ΨQ,

          當R2經(jīng)過點O時,2t-4=0時,t=2,

          當R1經(jīng)過點M時,時,,

          所以當時,線段R1 R2在OM上運動,

          所以當時,線段KL上至少存在一點與點H關(guān)于線段OM徑向?qū)ΨQ.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知A、B在數(shù)軸上對應的數(shù)分別用+2、﹣6表示,P是數(shù)軸上的一個動點.

          1)數(shù)軸上AB兩點的距離為 

          2)當P點滿足PB2PA時,求P點表示的數(shù).

          3)將一枚棋子放在數(shù)軸上k0點,第一步從k點向右跳2個單位到k1,第二步從k1點向左跳4個單位到k2,第三步從k2點向右跳6個單位到k3,第四步從k3點向左跳8個單位到k4

          如此跳6步,棋子落在數(shù)軸的k6點,若k6表示的數(shù)是12,則ko的值是多少?

          若如此跳了1002步,棋子落在數(shù)軸上的點k1002,如果k1002所表示的數(shù)是1998,那么k0所表示的數(shù)是  (請直接寫答案).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B. 甲車先出發(fā)勻速駛向B地,40 min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時. 由于滿載貨物,為了行駛安全,速度減少了50 km/h,結(jié)果與甲車同時到達B. 甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法:①a=4.5;②甲的速度是60 km/h;③乙出發(fā)80 min追上甲;乙剛到達貨站時,甲距B180 km.其中正確的有(

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB

          ∴∠COE=CAD,EOD=ODA,

          OA=OD,

          ∴∠OAD=ODA

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形的邊長為6,點上的一點,連接并延長交射線于點,將沿直線翻折,點落在點處,的延長線交于點,當時,則的長為________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】江夏區(qū)某出租車在某一天以江夏體育館為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:km)依先后次序記錄如下:+9,-2-5,-4,-12,+8+3,-1-4,+10

          (1)將最后一名乘客送到目的地,出租車離江夏體育館出發(fā)點多遠?

          (2)直接寫出該出租車在行駛過程中,離江夏體育館最遠的距離是______.

          (3)出租車按物價部門規(guī)定,行程不超過3km(3km),按起步價8元收費,若行程超過3km的,則超過的部分,每千米加收1.2元,該司機這天的營業(yè)額是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在菱形中,,過點于點,交對角線于點,過點于點.

          1)若,求四邊形的面積;(2)求證:.(溫馨提示;連接

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)模型建立,如圖1,等腰直角三角形ABC中,∠ACB90°,CBCA,直線ED經(jīng)過點C,過AADEDD,過BBEEDE.求證:△BEC≌△CDA;

          (2)模型應用:

          ①已知直線yx3y軸交于A點,與x軸交于B點,將線段AB繞點B逆時針旋轉(zhuǎn)90度,得到線段BC,過點A,C作直線.求直線AC的解析式;

          ②如圖3,矩形ABCOO為坐標原點,B的坐標為(8,6),AC分別在坐標軸上,P是線段BC上動點,已知點D在第一象限,且是直線y2x6上的一點,若△APD是不以A為直角頂點的等腰直角三角形,請直接寫出所有符合條件的點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,過點AAC垂直x軸于點C,連結(jié)BC.若ABC的面積為2

          1)求k的值;

          2x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案