日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知AB為⊙O的直徑.

          1)如圖a,點D 的中點,當弦BD=AC時,求∠A.

          2)如圖b,點D的中點,當AB=6,點EBD的中點時,求OE的長.

          3)如圖c,點D上任意一點(不與A、C重合),若點C的中點,探求BD、ADCD之間的數(shù)量關(guān)系,直接寫出你探求的結(jié)論,不要求證明.

          【答案】130°;(2;(3BDAD=CD

          【解析】

          1)連接OC,由BD=AC證明,進一步證明C的中點,從而可證∠A=COB=××180°=30°;

          2)連結(jié)OD,BC,證明DEF≌△BEC,分別OD,OF,BC,DFAC以及EF的長,

          RtOFE中運用勾股定理即可求得OE=

          3)連接BC,可證明∠BAC=BDC=45°,過點CCFCDBD于點F,證明ACD≌△BCF,根據(jù)BD=BF+DF可得結(jié)論.

          (1) 連結(jié)OC

          ∵點D的中點,

          BD=AC

          ,即點C的中點.

          ∴∠A=COB=××180°=30°.

          (2)連結(jié)OD,BC.

          AB為⊙O的直徑,

          ∴∠C=90

          ∵點D的中點,半徑OD所在的直線為⊙O的對稱軸

          ∴點A的對應點為C

          ODAC,ODAC,即:AF=CF,

          ∵點EBD的中點,

          BE=DE,

          DEFBEC

          ∴△DEF≌△BEC

          CE=EF, BC=DF

          AO=BO, AF=CF

          OF=BC=DF ,

          AB=6,

          OD=3

          OF=1, BC=DF=2

          RtABC中,AB=6BC=2,由勾股定理求得AC=4,

          ∵點FAC的中點,點EFC的中點

          EF=,

          RtOFE中,EF=,OF=1,由勾股定理求得OE=

          3BD、ADCD之間的關(guān)系為:BDAD=CD

          連接BC,

          AB是直徑,點C的中點,

          ∴∠ACB=90°,AC=BC,

          ∴∠BAC=BDC=45°,

          過點CCFCDBD于點F,

          ∴△DCF是等腰直角三角形,

          CD=CF,DF=CD,

          ∵∠ACD=BCF=90°-ACF,

          AC=BCCD=CF

          ∴△ACD≌△BCF

          AD=BF

          BD=BF+DF

          BD=AD+CD,即BDAD=CD.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=x2+bx+c經(jīng)過點A(﹣10),B3,0).請解答下列問題:

          1)求拋物線的解析式;

          2)點E2,m)在拋物線上,拋物線的對稱軸與x軸交于點H,點FAE中點,連接FH,求線段FH的長.

          注:拋物線y=ax2+bx+ca≠0)的對稱軸是x=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】中,D是邊BC上一點,以點A為圓心,AD長為半徑作弧,如果與邊BC有交點E(不與點D重合),那么稱A-外截弧.例如,圖中的一條A-外截弧.在平面直角坐標系xOy中,已知存在A-外截弧,其中點A的坐標為,點B與坐標原點O重合.

          1)在點,,中,滿足條件的點C是_______.

          2)若點C在直線.

          ①求點C的縱坐標的取值范圍.

          ②直接寫出A-外截弧所在圓的半徑r的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB10,BC8,以CD為直徑作⊙O.將矩形ABCD繞點C旋轉(zhuǎn),使所得矩形ABCD′的邊AB′與⊙O相切,切點為E,則AE的長為( )

          A. 8 B. 7 C. 6 D. 5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】ABC中,∠A=60°,∠ABC=45°,AB=4,DAC上一動點,以BD為直徑的⊙OBC于點E,交AB于點F,則EF的最小值是______.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】商場銷售一批名牌襯衫,平均每天可售出40件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件.

          1)若商場平均每天要盈利2400元,每件襯衫應降價多少元?

          2)若該商場要每天盈利最大,每件襯衫應降價多少元?盈利最大是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為迎接國慶節(jié),某商店購進了一批成本為每件30元的紀念商品.經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(元滿足一次函數(shù)關(guān)系,其圖象如圖所示.

          1)求該商品每天的銷售量與銷售單價的函數(shù)關(guān)系式;

          2)若商店按不低于成本價,且不高于60元的單價銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤(元最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】例:利用函數(shù)圖象求方程x22x20的實數(shù)根(結(jié)果保留小數(shù)點后一位).

          解:畫出函數(shù)yx22x2的圖象,它與x軸的公共點的橫坐標大約是﹣0.72.7.所以方程x22x20的實數(shù)根為x10.7,x2≈2.7.我們還可以通過不斷縮小根所在的范圍估計一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.

          根據(jù)你對上面教材內(nèi)容的閱讀與理解,解決下列問題:

          1)利用函數(shù)圖象確定不等式x24x+30的解集是   ;利用函數(shù)圖象確定方程x24x+3的解是   

          2)為討論關(guān)于x的方程|x24x+3|m解的情況,我們可利用函數(shù)y|x24x+3|的圖象進行研究.

          ①請在網(wǎng)格內(nèi)畫出函數(shù)y|x24x+3|的圖象;

          ②若關(guān)于x的方程|x24x+3|m有四個不相等的實數(shù)解,則m的取值范圍為   ;

          ③若關(guān)于x的方程|x24x+3|m有四個不相等的實數(shù)解x1,x2x3,x4x1x2x3x4),滿足x4x3x3x2x2x1,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBC,ACBD交于點E,點EBD的中點,延長CD到點F,使DFCD,連接AF

          1)求證:AECE;

          2)求證:四邊形ABDF是平行四邊形;

          3)若AB2,AF4,∠F30°,則四邊形ABCF的面積為   

          查看答案和解析>>

          同步練習冊答案