日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,動(dòng)點(diǎn)P從A出發(fā)以2厘米/秒的速度沿AB方向向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以3厘米/秒的速度沿B→C→D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒。
          (1)求邊BC的長;
          (2)當(dāng)t為何值時(shí),PC與BQ相互平分;
          (3)連接PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時(shí),y有最大值?最大值是多少?

          解:(1)作于點(diǎn)E,
          如圖(1)所示,則四邊形為矩形,

          又∵,


          中,由勾股定理得:;
          (2)假設(shè)PC與BQ相互平分,

          是平行四邊形(此時(shí)Q在CD上),
          ,

          解得,即秒時(shí),PC與BQ相互平分;
          (3)①當(dāng)Q在BC上,即時(shí),作于F,則,




          當(dāng)t=3秒時(shí),
          有最大值為厘米2,
          ②當(dāng)Q在CD上,即時(shí),


          易知S隨t的增大而減小,
          故當(dāng)秒時(shí),
          有最大值為,
          ,
          綜上,當(dāng)時(shí),有最大值為




          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在梯形ABCD中,AB=DC=10cm,AC與BD相交于G,且∠AGD=60°,設(shè)E為CG的中點(diǎn),F(xiàn)為AB的中點(diǎn),則EF的長為
           
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,動(dòng)點(diǎn)P從A出發(fā)以2厘米/秒的速度沿AB方向向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出精英家教網(wǎng)發(fā)以3厘米/秒的速度沿B?C?D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
          (1)求邊BC的長;
          (2)當(dāng)t為何值時(shí),PC與BQ相互平分;
          (3)連接PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時(shí),y有最大值?最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在梯形ABCD中,AD∥BC,E是梯形內(nèi)一點(diǎn),ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
          (1)求證:BE=CD;
          (2)若梯形ABCD為等腰梯形且DE=3,tan∠DCB=4,試求四邊形ABED的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•宣城模擬)我們知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;通過證明可以得到“三角形的中位線平行于三角形的第三邊,且等于第三邊的一半”類似三角形中位線,我們把連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線.如圖在梯形ABCD中,AD∥BC,點(diǎn)E,F(xiàn)分別是AB、CD的中點(diǎn),觀察EF的位置,聯(lián)想三角形中位線的性質(zhì),你能發(fā)現(xiàn)梯形的中位線有什么性質(zhì)?證明你的結(jié)論.
          (2)如果點(diǎn)E分線段AB為
          AE
          EB
          =
          1
          3
          ,EF∥BC交CD于F,AD=3,BC=5,請(qǐng)你利用第(1)的結(jié)論求出EF=
          3.5
          3.5
          (直接填寫結(jié)果);
          (3)如果點(diǎn)E分線段AB為
          AE
          EB
          =
          m
          n
          ,EF∥BC交CD 于F,AD=a,BC=b,求EF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖在梯形ABCD中,AD∥BC,∠B=∠C,DE交BC于點(diǎn)E,AD=BE.
          (1)AB=DE嗎?為什么?
          (2)梯形ABCD是等腰梯形嗎?為什么?

          查看答案和解析>>

          同步練習(xí)冊答案