日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ③等比數(shù)列, 查看更多

           

          題目列表(包括答案和解析)

          等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0)且b≠1,b,r均為常數(shù))的圖象上.
          (1)求r的值;
          (2)當(dāng)b=2時,記bn=
          n+14an
          (n∈N*),求數(shù)列{bn}的前n項和Tn

          查看答案和解析>>

          等比數(shù)列{an}中,已知a1=2,a4=16
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若a3,a5分別為等差數(shù)列{bn}的第3項和第5項,試求數(shù)列{bn}的通項公式及前n項和Sn

          查看答案和解析>>

          等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列,
          (1)求{an}的公比q;
          (2)求a1-a3=3,求Sn

          查看答案和解析>>

          等比數(shù)列{xn}各項均為正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11
          (1)求證:數(shù)列{yn}是等差數(shù)列;
          (2)數(shù)列{yn}的前多少項的和為最大?最大值是多少?
          (3)求數(shù)列{|yn|}的前n項和.

          查看答案和解析>>

          15、等比數(shù)列{an}中,已知a1=2,a4=16
          (1)求數(shù)列{an}的通項公式;
          (2)若a3,a5分別為等差數(shù)列{bn}的第3項和第5項,問a9是不是數(shù)列{bn}中的項,如果是求出是第幾項;如果不是說明理由.

          查看答案和解析>>

          一、選擇題:

          1.C 2.D3.A4.C 5.C6.A7.B  8.D9.B10.D11.B 12.B

          二、填空題:

          13、  14、  15、1   16、一   17、4  18、56  19、  20、 21、 22、4/9  23、②  24、 25、 26、①

          三、解答題:

          16、解: (Ⅰ),  

           ∴,

           解得

          (Ⅱ)由,得:,   

             

          17、解:(1)

          的最小正周期,  

          且當(dāng)單調(diào)遞增.

          的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).………6分

          (2)當(dāng),當(dāng),即

          所以.     

          的對稱軸.    

          18、解:(Ⅰ)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件,

          ∵“兩球恰好顏色不同”共種可能,

          解法二:“有放回摸取”可看作獨(dú)立重復(fù)實驗,

          ∵每次摸出一球得白球的概率為

          ∴“有放回摸兩次,顏色不同”的概率為

          (Ⅱ)設(shè)摸得白球的個數(shù)為,依題意得:

          ,

          ,

          19、(Ⅰ)證明:  連結(jié)交于點(diǎn),連結(jié)

          是菱形, ∴的中點(diǎn).

            *點(diǎn)的中點(diǎn), ∴.   

          平面平面, ∴平面.

          (Ⅱ)解法一:

           平面,平面,∴ .

          ,∴

          是菱形,  ∴.

          ,

          平面.

          ,垂足為,連接,則,

          所以為二面角的平面角.

          ,∴,.

          在Rt△中,=,

          .

          ∴二面角的正切值是.

          解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,

          ,

          . 

          設(shè)平面的一個法向量為,

          ,得,

          ,則,∴.   

          平面,平面,

          ,∴.

          是菱形,∴.

          ,∴平面.

          是平面的一個法向量,

          ,

          , 

          ∴二面角的正切值是.

          20、解:圓的方程為,則其直徑長,圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),

          ,  

          …6分

          ,

          因此.   

          據(jù)等差,, 

          所以,,

          即:方程為

          21、解:(1)因為

          所以,滿足條件.  

          又因為當(dāng)時,,所以方程有實數(shù)根

          所以函數(shù)是集合M中的元素.

          (2)假設(shè)方程存在兩個實數(shù)根),

          不妨設(shè),根據(jù)題意存在數(shù)

          使得等式成立, 

          因為,所以,與已知矛盾,

          所以方程只有一個實數(shù)根;

          (3)不妨設(shè),因為所以為增函數(shù),所以

            又因為,所以函數(shù)為減函數(shù),

            所以,

          所以,即,

          所以. 

           

           


          同步練習(xí)冊答案