日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (I)證明:因為.所以. 查看更多

           

          題目列表(包括答案和解析)

          解:因為有負根,所以在y軸左側(cè)有交點,因此

          解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


           13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

          若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

          (2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

          數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

          查看答案和解析>>

          如圖,在四棱錐中,⊥底面,底面為正方形,,分別是的中點.

          (I)求證:平面;

          (II)求證:;

          (III)設PD=AD=a, 求三棱錐B-EFC的體積.

          【解析】第一問利用線面平行的判定定理,,得到

          第二問中,利用,所以

          又因為,,從而得

          第三問中,借助于等體積法來求解三棱錐B-EFC的體積.

          (Ⅰ)證明: 分別是的中點,    

          .       …4分

          (Ⅱ)證明:四邊形為正方形,

          ,

          , ,

          ,.    ………8分

          (Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

           

          查看答案和解析>>

          請先閱讀:

          設平面向量=(a1,a2),=(b1,b2),且的夾角為è,

          因為=||||cosè,

          所以≤||||.

          當且僅當è=0時,等號成立.

          (I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

          (II)試求函數(shù)的最大值.

          查看答案和解析>>

          請先閱讀:
          設平面向量=(a1,a2),=(b1,b2),且的夾角為θ,
          因為=||||cosθ,
          所以≤||||.

          當且僅當θ=0時,等號成立.
          (I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
          (II)試求函數(shù)的最大值.

          查看答案和解析>>

          請先閱讀:
          設平面向量
          a
          =(a1,a2),
          b
          =(b1,b2),且
          a
          b
          的夾角為θ,
          因為
          a
          b
          =|
          a
          ||
          b
          |cosθ,
          所以
          a
          b
          ≤|
          a
          ||
          b
          |.
          a1b1+a2b2
          a
          2
          1
          +
          a
          2
          2
          ×
          b
          2
          1
          +
          b
          2
          2

          當且僅當θ=0時,等號成立.
          (I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
          a
          2
          1
          +
          a
          2
          2
          +
          a
          2
          3
          )(
          b
          2
          1
          +
          b
          2
          2
          +
          b
          2
          3
          )
          成立;
          (II)試求函數(shù)y=
          x
          +
          2x-2
          +
          8-3x
          的最大值.

          查看答案和解析>>


          同步練習冊答案