日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2).ǵĴ

           

          }Ŀб(𰸺ͽ)

           

          ABCJČ߅L2.

          JAĴ

          ڣ񣩵ėlABCeֵ   

           

           

           

           

           

           

           

           

           

          鿴𰸺ͽ>>

          ֪f(x)DăɂQSľx

          (1)󺯔(sh)f(x)څ^(q)gϵֵСֵ

          (2)JǡABCABC߅քeabcC

          鿴𰸺ͽ>>

          ֪f(x)DăɂQSľx

          (1)󺯔(sh)f(x)څ^(q)gϵֵСֵ

          (2)JǡABCABC߅քeabcC

          鿴𰸺ͽ>>

          Ӣҽ̾W(wng)D
          BC
          ĴС
          AB
          Сk
          BC
          ķ
          AB
          ķrD(zhun)Ƚǵõt҂Q
          AB
          (jng)^һΣȣkõ
          BC
           ֪
          OA1
          =(10)

          1
          OA1
          (jng)^2(
          2
          
          1
          2
          )
          죬քeõ
          A1A2
          
          A2A3
          A1A2
          
          A2A3
          ˣ
          2
          OA1
          (jng)^n-1(
          2
          1
          2
          )
          õһ
          An-1An
          nN*n1O(sh)cAnxnynAnĘOλA(
          lim
          n
          xn
          lim
          n
          yn)

          3
          OA1
          (jng)^2Σȣkõ
          A1A2
          
          A2A3
          k0ȡʣ0У
          OA1
          A1A2
          
          A2A3
          ǡ܉(gu)һΣA3cOغϣkֵ

          鿴𰸺ͽ>>

          С}M12֣

              ֪ABC(ni)

             1ֵ

             2ֵ

           

          鿴𰸺ͽ>>

          һ. DCADB   CCDAC

          .11. 3ȣ3412.   13. 2  14.  9  15. 1

          16⣺֪ã   (3)

          ǡABCă(ni)ǣ     (6)

          9

          ǡABCă(ni)12

          17⣺I??????????????4

          II????????????????7

          ??????????11

          ȡֵ????????????????????????12

          18. :  (1) .6

          (2)ԭʽ

                 .8

          19⣺1

            2

          tС ???????????????????4    

          Үr{(dio)f

          Ć{(dio)f^(q)g_^(q)g۷֣??7

           

          2rr

          ?????????????????11     

          ČQS??????????14    

          20.⣺񣩡r.

               [13](sh).---------------------------------3

               ஔr -226.

               Ԯrr----4

           ڳ(sh)M=26ʹM.

                 ʺ(sh)[13]ϵн纯(sh).---------------------------6

          򣩡. 11----------------8

                   ------------------------10

          @Ȼφ{(dio)fp

          tt+ޕr1. 

          @Ȼφ{(dio)fp

          tr  

                0a1                              

          aȡֵ0a1. -------------14

           

           

           

           

           

          21.⣺(I) } f (e) = pe2ln e = qe 2      1

           Þ (pq) (e + ) = 0       2

          e + 0

              p = q       3

          (II)  (I) ֪ f (x) = px2ln x

           f(x) = p + =   4

          h(x) = px 22x + pҪʹ f (x) 䶨x (0,+¥) (ni){(dio)(sh)ֻ h(x) (0,+¥) (ni)M㣺h(x)0 h(x)0 .     5

          p = 0r h(x) = 2x x > 0 h(x) < 0 f(x) =  < 0

              f (x) (0,+¥) (ni){(dio)fp p = 0m}.      6

          p > 0rh(x) = px 22x + pD_ϵĒタQS x = (0,+¥)      h(x)min = p

          ֻ p1 p1 r h(x)0f(x)0

              f (x) (0,+¥) (ni){(dio)f

          p1m}.      7

          p < 0rh(x) = px 22x + pD_µĒタQS x = Ï (0,+¥)

          ֻ h(0)0 p0r h(x)0 (0,+¥) .

          p < 0m}.      8

          CϿɵp1 p0     9

          ⣺(II)      (I) ֪ f (x) = px2ln x

           f(x) = p + = p (1 + )      4

          Ҫʹ f (x) 䶨x (0,+¥) (ni){(dio)(sh)ֻ f(x) (0,+¥) (ni)M㣺f(x)0 f(x)0 .    5

          f(x)0 Û p (1 + )0 Û p Û p()maxx > 0

              = 1 x = 1 r̖ ()max = 1

              p1       7

          f(x)0 Û p (1 + )0 Û p  Û p()minx > 0

          > 0 x 0 r 0 p0    8

          CϿɵp1 p0     9

          (III)     g(x) = [1,e] ǜp(sh)

              x = e rg(x)min = 2x = 1 rg(x)max = 2e

              g(x) Î [2,2e] 10

          p0 r (II) ֪ f (x) [1,e] fp Þ f (x)max = f (1) = 0 < 2}       11

          0 < p < 1 rx Î [1,e] Þ x0

              f (x) = p (x)2ln xx2ln x

          ߅ f (x) p = 1 rı_ʽ [1,e] f

              f (x)x2ln xe2ln e = e2 < 2}       12

          p1 r (II) ֪ f (x) [1,e] Bm(x)ff (1) = 0 < 2g(x) [1,e] ǜp(sh)

              } Û f (x)max > g(x)min = 2x Î [1,e]

           Þ f (x)max = f (e) = p (e)2ln e > 2

           Þ p >      13

          Cϣp ȡֵ (,+¥) 14

           

           

           

           

           

           


          ͬ(x)Դ