日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21.解:(1)由題意知.設(shè).由余弦定理得 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時,求實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問中,利用

          第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>

          如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

          (1)求圓錐體的體積;

          (2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

          【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

          第一問中,由題意,,故

          從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

          解:(1)由題意,

          從而體積.

          (2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.

          OAH中,由OAOB得;

          中,,PH=1/2SB=2,

          ,所以異面直線SO與P成角的大arctan

           

          查看答案和解析>>

          在等比數(shù)列中,,

          (1)求數(shù)列的通項(xiàng)公式; (2)求數(shù)列的前項(xiàng)和

          【解析】第一問中利用等比數(shù)列中,,兩項(xiàng)確定通項(xiàng)公式即可

          第二問中,在第一問的基礎(chǔ)上,然后求和。

          解:(1)由題意得到:

                 ……6分

          (2)      ……①

             …… ②

          ①-②得到

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實(shí)數(shù)a的取值范圍;

          (2)比較的大小,說明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問中,利用

          解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

          ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時:f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

          從而,

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>


          同步練習(xí)冊答案