日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.AB=AC.BD=CD 可根據(jù)( )得到 查看更多

           

          題目列表(包括答案和解析)

          10、如圖,AB=AC,BD=CD可根據(jù)( 。┑玫健鰽BD≌△ACD.

          查看答案和解析>>

          如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=
          1
          2
          AB
          .于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

          請根據(jù)從上面材料中所得到的信息解答下列問題:
          (1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=
          a
          2
          a
          2
          ;
          (2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=
          15cm
          15cm

          (3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=
          3:1
          3:1

          (4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          (2013•達(dá)州)通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個案例,請補(bǔ)充完整.
          原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

          (1)思路梳理
          ∵AB=AD,
          ∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
          ∵∠ADC=∠B=90°,
          ∴∠FDG=180°,點(diǎn)F、D、G共線.
          根據(jù)
          SAS
          SAS
          ,易證△AFG≌
          △AEF
          △AEF
          ,得EF=BE+DF.
          (2)類比引申
          如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系
          ∠B+∠D=180°
          ∠B+∠D=180°
          時,仍有EF=BE+DF.
          (3)聯(lián)想拓展
          如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

          查看答案和解析>>

          通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的。下面是一個案例,請補(bǔ)充完整。

          原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。

          (1)思路梳理

          ∵AB=CD,

          ∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合。

          ∵∠ADC=∠B=90°,

          ∴∠FDG=180°,點(diǎn)F、D、G共線。

          根據(jù)    ,易證△AFG≌    ,得EF=BE+DF。

          (2)類比引申

          如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系    時,仍有EF=BE+DF。

          (3)聯(lián)想拓展

          如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程。

           

          查看答案和解析>>

          通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的。下面是一個案例,請補(bǔ)充完整。

          原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
          (1)思路梳理
          ∵AB=CD,
          ∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合。
          ∵∠ADC=∠B=90°,
          ∴∠FDG=180°,點(diǎn)F、D、G共線。
          根據(jù)    ,易證△AFG≌    ,得EF=BE+DF。
          (2)類比引申
          如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系    時,仍有EF=BE+DF。
          (3)聯(lián)想拓展
          如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程。

          查看答案和解析>>


          同步練習(xí)冊答案