日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅲ)求點到平面的距離.[標準答案]: [高考考點]: 直線與直線的垂直.二面角.點面距離[易錯提醒]: 二面角的平面角找不到.求點面距離的方法單一[備考提示]: 找二面角的方法大致有十種左右.常見的也有五六種.希望能夠全面掌握. 查看更多

           

          題目列表(包括答案和解析)

          如圖,四棱錐中,底面是邊長為2的正方形,,且中點.

          (Ⅰ)求證:平面;    

          (Ⅱ)求二面角的大;

          (Ⅲ)在線段上是否存在點,使得點到平

          的距離為?若存在,確定點的位置;

          若不存在,請說明理由.

           

          查看答案和解析>>

          某單位有、三個工作點,需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,.假定、、四點在同一平面內(nèi).

          (Ⅰ)求的大。

          (Ⅱ)求點到直線的距

           

          查看答案和解析>>

          某單位有、三個工作點,需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,,.假定、、四點在同一平面內(nèi).

          (Ⅰ)求的大。

          (Ⅱ)求點到直線的距

           

          查看答案和解析>>

          某單位有、、三個工作點,需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,.假定、四點在同一平面內(nèi).

          (Ⅰ)求的大。

          (Ⅱ)求點到直線的距

          查看答案和解析>>

          已知棱長為1的正方體AC1,E、F分別是B1C1、C1D1的中點.
          (1)求證:E、F、D、B共面;
          (2)求點A1到平面的BDEF的距離;
          (3)求直線A1D與平面BDEF所成的角.

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.           10.           11.5      10           12.            

          13.②           14. 

          三、解答題(本大題共6小題,共80分)

          15.(共13分)

          解:(Ⅰ)

          因為函數(shù)的最小正周期為,且

          所以,解得

          (Ⅱ)由(Ⅰ)得

          因為,

          所以,

          所以,

          因此,即的取值范圍為

          16.(共14分)

          解法一:

          (Ⅰ)取中點,連結(jié)

          ,

          ,

          ,

          平面

          平面,

          (Ⅱ),,

          ,即,且,

          平面

          中點.連結(jié)

          ,

          在平面內(nèi)的射影,

          是二面角的平面角.

          中,,,,

          二面角的大小為

          (Ⅲ)由(Ⅰ)知平面,

          平面平面

          ,垂足為

          平面平面,

          平面

          的長即為點到平面的距離.

          由(Ⅰ)知,又,且,

          平面

          平面

          中,,

          到平面的距離為

          解法二:

          (Ⅰ),

          ,

          ,

          平面

          平面,

          (Ⅱ)如圖,以為原點建立空間直角坐標系

          設(shè)

          ,

          ,

          中點,連結(jié)

          ,

          ,

          是二面角的平面角.

          ,,

          二面角的大小為

          (Ⅲ),

          在平面內(nèi)的射影為正的中心,且的長為點到平面的距離.

          如(Ⅱ)建立空間直角坐標系

          ,

          的坐標為

          到平面的距離為

          17.(共13分)

          解:(Ⅰ)記甲、乙兩人同時參加崗位服務(wù)為事件,那么,

          即甲、乙兩人同時參加崗位服務(wù)的概率是

          (Ⅱ)記甲、乙兩人同時參加同一崗位服務(wù)為事件,那么,

          所以,甲、乙兩人不在同一崗位服務(wù)的概率是

          (Ⅲ)隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),

          所以,的分布列是

          1

          3

           

          18.(共13分)

          解:

          ,得

          ,即時,的變化情況如下表:

          0

          ,即時,的變化情況如下表:

          0

          所以,當時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

          上單調(diào)遞減.

          時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

          ,即時,,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

          19.(共14分)

          解:(Ⅰ)由題意得直線的方程為

          因為四邊形為菱形,所以

          于是可設(shè)直線的方程為

          因為在橢圓上,

          所以,解得

          設(shè)兩點坐標分別為

          ,,,

          所以

          所以的中點坐標為

          由四邊形為菱形可知,點在直線上,

          所以,解得

          所以直線的方程為,即

          (Ⅱ)因為四邊形為菱形,且,

          所以

          所以菱形的面積

          由(Ⅰ)可得,

          所以

          所以當時,菱形的面積取得最大值

          20.(共13分)

          (Ⅰ)解:,

          ,

          ;

          ,

          (Ⅱ)證明:設(shè)每項均是正整數(shù)的有窮數(shù)列,

          ,,,

          從而

          ,

          所以

          同步練習冊答案