日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [試題分析一]: 過圓心M作直線:y=x的垂線交與N點(diǎn).過N點(diǎn)作圓的切線能夠滿足條件.不難求出夾角為60.[試題分析二]:明白N點(diǎn)后.用圖象法解之也很方便[高考考點(diǎn)]: 直線與圓的位置關(guān)系.[易錯(cuò)提醒]: N點(diǎn)找不到.[備考提示]: 數(shù)形結(jié)合這個(gè)解題方法在高考中應(yīng)用的非常普遍.希望加強(qiáng)訓(xùn)練. 查看更多

           

          題目列表(包括答案和解析)

          【選做題】本題包括A,B,C,D四小題,請(qǐng)選定其中兩題作答,每小題10分,共計(jì)20分,解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.

          A選修4—1:幾何證明選講

          自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為AMPA的中點(diǎn),

          過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,

          BPC=40°,求∠MPB的大小.

           

          查看答案和解析>>

          【必做題】本題滿分10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

          甲、乙、丙三個(gè)同學(xué)一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預(yù)錄取生(可在高考中加分錄。瑑纱慰荚囘^程相互獨(dú)立.根據(jù)甲、乙、丙三個(gè)同學(xué)的平時(shí)成績分析,甲、乙、丙三個(gè)同學(xué)能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.5,0.6,0.75.

          (1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過筆試的概率;

          (2)設(shè)經(jīng)過兩次考試后,能被該高校預(yù)錄取的人數(shù)為,求隨機(jī)變量的期望

          查看答案和解析>>

          【必做題】本題滿分10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

          甲、乙、丙三個(gè)同學(xué)一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預(yù)錄取生(可在高考中加分錄取),兩次考試過程相互獨(dú)立.根據(jù)甲、乙、丙三個(gè)同學(xué)的平時(shí)成績分析,甲、乙、丙三個(gè)同學(xué)能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.5,0.6,0.75.

          (1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過筆試的概率;

          (2)設(shè)經(jīng)過兩次考試后,能被該高校預(yù)錄取的人數(shù)為,求隨機(jī)變量的期望

          查看答案和解析>>

          “中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
          男性 女性 合計(jì)
          反感 10
          不反感 8
          合計(jì) 30
          已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
          8
          15

          (Ⅰ)請(qǐng)將上面的列表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?(x2=
          (a+b+c+d)(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,當(dāng)Χ2<2.706時(shí),沒有充分的證據(jù)判定變量性別有關(guān),當(dāng)Χ2>2.706時(shí),有90%的把握判定變量性別有關(guān),當(dāng)Χ2>3.841時(shí),有95%的把握判定變量性別有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握判定變量性別有關(guān))
          (Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          【必做題】解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
          某射擊運(yùn)動(dòng)員向一目標(biāo)射擊,該目標(biāo)分為3個(gè)不同部分,第一、二、三部分面積之比為1:3:6.擊中目標(biāo)時(shí),擊中任何一部分的概率與其面積成正比.
          (1)若射擊4次,每次擊中目標(biāo)的概率為
          13
          且相互獨(dú)立.設(shè)ξ表示目標(biāo)被擊中的次數(shù),求ξ的分布列和數(shù)學(xué)期望E(ξ);
          (2)若射擊2次均擊中目標(biāo),A表示事件“第一部分至少被擊中1次或第二部分被擊中2次”,求事件A發(fā)生的概率.

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.           10.           11.5      10           12.            

          13.②           14. 

          三、解答題(本大題共6小題,共80分)

          15.(共13分)

          解:(Ⅰ)

          因?yàn)楹瘮?shù)的最小正周期為,且,

          所以,解得

          (Ⅱ)由(Ⅰ)得

          因?yàn)?sub>,

          所以,

          所以,

          因此,即的取值范圍為

          16.(共14分)

          解法一:

          (Ⅰ)取中點(diǎn),連結(jié)

          ,

          ,

          平面

          平面,

          (Ⅱ)

          ,

          ,即,且,

          平面

          中點(diǎn).連結(jié)

          在平面內(nèi)的射影,

          是二面角的平面角.

          中,,,

          二面角的大小為

          (Ⅲ)由(Ⅰ)知平面,

          平面平面

          ,垂足為

          平面平面,

          平面

          的長即為點(diǎn)到平面的距離.

          由(Ⅰ)知,又,且

          平面

          平面,

          中,,

          點(diǎn)到平面的距離為

          解法二:

          (Ⅰ),

          ,

          ,

          平面

          平面,

          (Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

          設(shè)

          ,

          中點(diǎn),連結(jié)

          ,,

          ,

          是二面角的平面角.

          ,,,

          二面角的大小為

          (Ⅲ)

          在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.

          如(Ⅱ)建立空間直角坐標(biāo)系

          ,

          點(diǎn)的坐標(biāo)為

          點(diǎn)到平面的距離為

          17.(共13分)

          解:(Ⅰ)記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么,

          即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是

          (Ⅱ)記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,那么

          所以,甲、乙兩人不在同一崗位服務(wù)的概率是

          (Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),

          所以的分布列是

          1

          3

           

          18.(共13分)

          解:

          ,得

          當(dāng),即時(shí),的變化情況如下表:

          0

          當(dāng),即時(shí),的變化情況如下表:

          0

          所以,當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

          上單調(diào)遞減.

          當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

          當(dāng),即時(shí),,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

          19.(共14分)

          解:(Ⅰ)由題意得直線的方程為

          因?yàn)樗倪呅?sub>為菱形,所以

          于是可設(shè)直線的方程為

          因?yàn)?sub>在橢圓上,

          所以,解得

          設(shè)兩點(diǎn)坐標(biāo)分別為,

          ,,

          所以

          所以的中點(diǎn)坐標(biāo)為

          由四邊形為菱形可知,點(diǎn)在直線上,

          所以,解得

          所以直線的方程為,即

          (Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,

          所以

          所以菱形的面積

          由(Ⅰ)可得

          所以

          所以當(dāng)時(shí),菱形的面積取得最大值

          20.(共13分)

          (Ⅰ)解:

          ,

          ;

          ,

          (Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列

          ,,,,

          從而

          ,

          所以

          同步練習(xí)冊(cè)答案