日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 31.為解方程.我們可將看作一個整體.然后設(shè),那么原方程可化為①.解這個方程.得..當(dāng)時..所以,當(dāng)時..所以則原方程的解為... 解答下列問題: (1)填空:在由原方程得到方程①的過程中.利用 法達到降次的目的.體現(xiàn)了 的數(shù)學(xué)思想, 查看更多

           

          題目列表(包括答案和解析)

          為解方程(x2-1)2-5(x2-1)+4=0,我們可將x2-1看作一個整體,然后設(shè)x2-1=y;那么原方程可化為y2-5y+4=0①,解這個方程,得y1=1,y2=4.當(dāng)y1=1時,x2-1=1,所以x=±
          2
          ;當(dāng)y2=4時,x2-1=4,所以x=±
          5
          則原方程的解為x1=
          2
          ,x2=-
          2
          ,x3=
          5
          ,x4=-
          5

          解答下列問題:
          (1)填空:在由原方程得到方程①的過程中,利用
          換元
          換元
          法達到降次的目的,體現(xiàn)了
          轉(zhuǎn)化
          轉(zhuǎn)化
          的數(shù)學(xué)思想;
          (2)請利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

          查看答案和解析>>

          為解方程(x2-1)2-5(x2-1)+4=0,我們可將x2-1看作一個整體,然后設(shè)x2-1=y;那么原方程可化為y2-5y+4=0①,解這個方程,得y1=1,y2=4.當(dāng)y1=1時,x2-1=1,所以x=±
          2
          ;當(dāng)y2=4時,x2-1=4,所以x=±
          5
          則原方程的解為x1=
          2
          ,x2=-
          2
          ,x3=
          5
          ,x4=-
          5

          解答下列問題:
          (1)填空:在由原方程得到方程①的過程中,利用______法達到降次的目的,體現(xiàn)了______的數(shù)學(xué)思想;
          (2)請利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

          查看答案和解析>>

          閱讀材料:
          為解方程(x-1)2-5(x-1)+4=0時,我們可以將x-1看作一個整體,然后設(shè)x-1=y….①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時,x-1=1,∴x=2;當(dāng)y=4時,x-1=4,∴x=5;故原方程的解為x1=2,x2=5.
          解答問題:
          (1)上述解題過程,在由原方程得到方程①的過程中,運用了
          換元
          換元
          法達到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;
          (2)請利用以上知識解方程:(3x+5)2-4(3x+5)+3=0.

          查看答案和解析>>

          閱讀材料:
          為解方程(x-1)2-5(x-1)+4=0時,我們可以將x-1看作一個整體,然后設(shè)x-1=y….①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時,x-1=1,∴x=2;當(dāng)y=4時,x-1=4,∴x=5;故原方程的解為x1=2,x2=5.
          解答問題:
          (1)上述解題過程,在由原方程得到方程①的過程中,運用了______法達到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;
          (2)請利用以上知識解方程:(3x+5)2-4(3x+5)+3=0.

          查看答案和解析>>

          閱讀材料:
          為解方程(x-1)2-5(x-1)+4=0時,我們可以將x-1看作一個整體,然后設(shè)x-1=y….①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時,x-1=1,∴x=2;當(dāng)y=4時,x-1=4,∴x=5;故原方程的解為x1=2,x2=5.
          解答問題:
          (1)上述解題過程,在由原方程得到方程①的過程中,運用了______法達到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;
          (2)請利用以上知識解方程:(3x+5)2-4(3x+5)+3=0.

          查看答案和解析>>


          同步練習(xí)冊答案