日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 從而得... ∴.. ----6分(2)∵F1.F2(2.0). 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列滿足,

          (1)求證:數(shù)列是等比數(shù)列;

          (2)求數(shù)列的通項(xiàng)和前n項(xiàng)和

          【解析】第一問中,利用,得到從而得證

          第二問中,利用∴ ∴分組求和法得到結(jié)論。

          解:(1)由題得 ………4分

                              ……………………5分

             ∴數(shù)列是以2為公比,2為首項(xiàng)的等比數(shù)列;   ……………………6分

          (2)∴                                  ……………………8分

               ∴                                  ……………………9分

               ∴

           

          查看答案和解析>>

          如圖,在直三棱柱中,底面為等腰直角三角形,為棱上一點(diǎn),且平面平面.

          (Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

          (Ⅱ)判斷四棱錐的體積是否相等,并證明。

          【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

          易知。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

          (2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

          (1)過點(diǎn)點(diǎn),取的中點(diǎn),連且相交于,面內(nèi)的直線,!3分

          且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

          (2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

          ∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

           

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時(shí),,故. …………5分

          所以.                 …………6分

          (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點(diǎn),,

          當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大。

          (Ⅱ)若,求的值.

          【解析】第一問中利用依題意,故

          第二問中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          在數(shù)列中,,當(dāng)時(shí), 

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求和 綜合運(yùn)用。第一問中 ,利用,得到,故故為以1為首項(xiàng),公差為2的等差數(shù)列. 從而     

          第二問中,

          ,從而可得

          為以1為首項(xiàng),公差為2的等差數(shù)列.

          從而      ……………………6分

          (2)……………………9分

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案