日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3) 若.求直線PQ的方程. 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓Γ的方程為(a>b>0),A(0,b) 、B(0,-b)和 Q(a,0)為Γ的三個頂點(diǎn)。
          (Ⅰ)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);
          (Ⅱ)設(shè)直線l1:y=k1x+p交橢圓Γ于C、D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E。若k1·k2=-,證明:E為CD的中點(diǎn);
          (Ⅲ)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何作過PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個交點(diǎn)P1、P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1)。若橢圓Γ上的點(diǎn)P1、P2滿足,求點(diǎn)P1、P2的坐標(biāo)。

          查看答案和解析>>

          已知橢圓Γ的方程為(a>b>0),A(0,b),B(0,-b)和 Q(a,0)為Γ的三個頂點(diǎn)。
          (1)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);
          (2)設(shè)直線l1:y=k1x+p交橢圓Γ于C,D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E,若,證明:E為CD的中點(diǎn);
          (3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何作過PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個交點(diǎn)P1,P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1)。若橢圓Γ上的點(diǎn)P1,P2滿足,求點(diǎn)P1,P2的坐標(biāo)。

          查看答案和解析>>

          已知曲線C:y=x2與直線l:x-y+2=0交于兩點(diǎn)A(xA,yA)和B(xB,yB),且xA<xB。記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D。設(shè)點(diǎn)P(s,t)是L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合,
          (1)若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程;
          (2)若曲線G:x2-2ax+y2-4y+a2+=0與點(diǎn)D有公共點(diǎn),試求a的最小值。

          查看答案和解析>>

          如圖,P是拋物線C:y=x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q,
          (Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
          (Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求的取值范圍。

          查看答案和解析>>

          如圖,P是拋物線C:y=x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q,
          (Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
          (Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求的取值范圍。

          查看答案和解析>>

          一、選擇題:本小題共8小題,每小題5分,共40分.

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          答案

          B

          D

          B

          B

          A

          C

          B

          C

          二、填空題:本小題9―12題必答,13、14、15小題中選答2題,若全答只計前兩題得分,共30分.

          9.  35         10.            11.           12. 

          13.           14.   10          15.

          三、解答題:共80分.

          16題(本題滿分13分)

          解:(1)要使f(x)有意義,必須,即

          得f(x)的定義域?yàn)?sub>………………………………4分

          。ǎ玻┮上,

              當(dāng)時取得最大值………………………………………5分

              當(dāng)時,,得f(x)的遞減區(qū)間為

          ,遞增區(qū)間為……9分

           (3)因f(x)的定義域?yàn)?sub>,關(guān)于原點(diǎn)不對稱,所以f(x)為非奇非偶函數(shù). ……………………………………………………………………13分

          17題(本題滿分13分)

          解:(1)當(dāng)且僅當(dāng)時,方程組有唯一解.因的可能情況為三種情況………………………………3分

                  而先后兩次投擲骰子的總事件數(shù)是36種,所以方程組有唯一解的概率

                  ……………………………………………………………………6分

               

           

           

          (2)因?yàn)榉匠探M只有正數(shù)解,所以兩直線的交點(diǎn)在第一象限,由它們的圖像可知

                    ………………………………………………………………9分

          解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程組只有正數(shù)解的概率………………………………………………………………………13分

          18題(本題滿分14分)

          解:(1)因,所以AD⊥平面CDE,ED是AE在平面CDE上的射影,∠AED=450,所以直線AE與平面CDE所成的角為450………………………………4分(2)解法一:如圖,取AB、AD所在直線為x軸、y軸建立直角坐標(biāo)系A(chǔ)―xyz.

          ………5分

          設(shè),  

          …………9分

           

           

           

          ,得,而是平面CDE的一個法向量,且平面CDE,

          所以MN//平面CDE…………………………………………………………………………14分

          解法二:設(shè)在翻轉(zhuǎn)過程中,點(diǎn)M到平面CDE的距離為,點(diǎn)N到平面CDE的距離為,則,同理

          所以,故MN//平面CDE……………………………………………………………14分

          解法三:如圖,過M作MQ//AD交ED于點(diǎn)Q,

          過N作NP//AD交CD于點(diǎn)P,

          連接MN和PQ…………………………………5分

           

           

           

           

           

           

          設(shè)ㄓADE向上翻折的時間為t,則………………7分

          ,點(diǎn)D是CE的中點(diǎn),得,四邊形ABCD為正方形,ㄓADE為等腰三角形. ……………………10分

          在RtㄓEMQ和RtㄓDNP中,ME=ND,∠MEQ=∠NDP=450,所以RtㄓEMQ≌RtㄓDNP,

          所以MQ//NP且MQ=NP,的四邊形MNPQ為平行四邊形,所以MN//PQ,因平面CDE,

          平面CDE,所以MN//平面CDE……………………………………………………14分

          19題(本題滿分14分)

          解:(1)由已知得,解得:……………………2分

          所求橢圓方程為………………………………………………4分

          (2)因,得……………………………………7分

          (3)因點(diǎn)即A(3,0),設(shè)直線PQ方程為………………8分

          則由方程組,消去y得:

          設(shè)點(diǎn)……………………10分

          ,得,

          ,代入上式得

          ,故

          解得:,所求直線PQ方程為……………………14分

          20題(本題滿分14分)

          解:(1)函數(shù)f(x)的定義域?yàn)?sub>,…………2分

          ①當(dāng)時,>0,f(x)在上遞增.………………………………4分

          ②當(dāng)時,令解得:

          ,因(舍去),故在<0,f(x)遞減;在上,>0,f(x)遞增.…………8分

          (2)由(1)知內(nèi)遞減,在內(nèi)遞增.

          ……………………………………11分

          ,又因

          ,得………………14分

          21題(本題滿分12分)

          解:(1)

          解法一:由,可得

          ………………………………2分

          所以是首項(xiàng)為0,公差為1的等差數(shù)列.

          所以……………………4分

          解法二:因

          ,

          ,

          …………………………………………………………

          由此可猜想數(shù)列的通項(xiàng)公式為:…………2分

          以下用數(shù)學(xué)歸納法證明:

          ①當(dāng)n=1時,,等式成立;

          ②假設(shè)當(dāng)n=k時,有成立,那么當(dāng)n=k+1時,

               成立

          所以,對于任意,都有成立……………………4分

          (2)解:設(shè)……①

          ……②

          當(dāng)時,①②得

          …………6分

          這時數(shù)列的前n項(xiàng)和

          當(dāng)時,,這時數(shù)列的前n項(xiàng)和

          …………………………………………8分

          (3)證明:因,顯然存在k=1,使得對任意,

          成立;…………………………………………9分

          ①當(dāng)n=1時,等號成立;

          ②當(dāng)時,因

                         

                         

          所以,存在k=1,使得成立……………12分

           

           

           


          同步練習(xí)冊答案