日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓Γ的方程為(a>b>0),A(0,b),B(0,-b)和 Q(a,0)為Γ的三個(gè)頂點(diǎn)。
          (1)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);
          (2)設(shè)直線l1:y=k1x+p交橢圓Γ于C,D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E,若,證明:E為CD的中點(diǎn);
          (3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何作過(guò)PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個(gè)交點(diǎn)P1,P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1)。若橢圓Γ上的點(diǎn)P1,P2滿足,求點(diǎn)P1,P2的坐標(biāo)。
          解:(1)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0),由題意可知


          ∴點(diǎn)M的坐標(biāo)為
          (2)由
          ∴CD中點(diǎn)坐標(biāo)為


          得l1與l2的交點(diǎn)E的坐標(biāo)為
          ∴l(xiāng)1與l2的交點(diǎn)E為CD的中點(diǎn)。
          (3)設(shè)OF的斜率為k1,過(guò)F作斜率為的直線交橢圓于P1,P2兩點(diǎn)
          由(2)可知,F(xiàn)是P1P2的中點(diǎn),四邊形PP1QP2是平行四邊形,
          所以,直線P1P2即為所求,
          由a=10,b=5及點(diǎn)P(-8,-1),得PQ的中點(diǎn)為,OS的斜率
          過(guò)點(diǎn)S且斜率的直線l的方程是
          記l與Γ的交點(diǎn)為P1,P2,則
          解得P1(8,3),P2(-6,-4)。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C的方程為:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),B是它的下頂點(diǎn),F(xiàn)是其右焦點(diǎn),BF的延長(zhǎng)線與橢圓及其右準(zhǔn)線分別交于P、Q兩點(diǎn),若點(diǎn)P恰好是BQ的中點(diǎn),則此橢圓的離心率是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓C的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,點(diǎn)A、B分別為其左、右頂點(diǎn),點(diǎn)F1、F2分別為其左、右焦點(diǎn),以點(diǎn)A為圓心,AF1為半徑作圓A;以點(diǎn)B為圓心,OB為半徑作圓B;若直線l: y=-
          3
          3
          x
          被圓A和圓B截得的弦長(zhǎng)之比為
          15
          6
          ;
          (1)求橢圓C的離心率;
          (2)己知a=7,問(wèn)是否存在點(diǎn)P,使得過(guò)P點(diǎn)有無(wú)數(shù)條直線被圓A和圓B截得的弦長(zhǎng)之比為
          3
          4
          ;若存在,請(qǐng)求出所有的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•泉州模擬)已知橢圓C的方程為:
          x2
          a2
          +
          y2
          2
          =1 (a>0)
          ,其焦點(diǎn)在x軸上,離心率e=
          2
          2

          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)動(dòng)點(diǎn)P(x0,y0)滿足
          OP
          =
          OM
          +2
          ON
          ,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為-
          1
          2
          ,求證:x02+2
          y
          2
          0
          為定值.
          (3)在(2)的條件下,問(wèn):是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C1的方程為
          x24
          +y2=1
          ,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (1)求雙曲線C2的方程;
          (2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C1交于不同的兩點(diǎn)A、B,且滿足|OA|2+|OB|2>|AB|2,(其中O為原點(diǎn)),求l斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1
          ,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且
          OA
          OB
          >2
          (其中O為原點(diǎn)),求k的范圍.
          (3)試根據(jù)軌跡C2和直線l,設(shè)計(jì)一個(gè)與x軸上某點(diǎn)有關(guān)的三角形形狀問(wèn)題,并予以解答(本題將根據(jù)所設(shè)計(jì)的問(wèn)題思維層次評(píng)分).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案