日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.橢圓為橢圓的左.右頂點(diǎn). 查看更多

           

          題目列表(包括答案和解析)

           

          如圖,橢圓為橢圓的左、右頂點(diǎn).

          (1)設(shè)為橢圓的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí),取得最小值與最大值;

          (2)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為l,求橢圓的標(biāo)準(zhǔn)方程;

          (3)若直線與(2)中所述橢圓相交于、兩點(diǎn)(不是左右頂點(diǎn)),且滿是,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

           

           

           

           

           

          查看答案和解析>>

          精英家教網(wǎng)如圖,橢圓C:
          x2
          a2
          +
          y2
          2
          =1
          焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線y=
          2
          x
          上一點(diǎn)P.
          (Ⅰ)求橢圓C及拋物線C1、C2的方程;
          (Ⅱ)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn)Q(-
          2
          ,0),求
          QM
          .
          QN
          的最小值.

          查看答案和解析>>

          如圖,橢圓C:
          x2
          a2
          +
          y2
          a2-1
          =1
          的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2,P為以F1、F2為直徑的圓上異于F1、F2的動(dòng)點(diǎn),直線PF1、PF2分別交橢圓C于M、N和D、E.
          (1)證明:
          AP
          BP
          為定值K;
          (2)當(dāng)K=-2時(shí),問是否存在點(diǎn)P,使得四邊形DMEN的面積最小,若存在,求出最小值和P坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          如圖,橢圓C的焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B.拋物線C1、C2分別以AB為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)OC1C2相交于直線上一點(diǎn)P

          (1)求橢圓C及拋物線C1、C2的方程;

          (2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),求的最小值.

           

          查看答案和解析>>

          如圖,橢圓的左、右頂點(diǎn)分別是,,左、右焦點(diǎn)分別是,,若,,成等比數(shù)列,則此橢圓的離心率為

          A. B. C. D.

          查看答案和解析>>

          1.D    2.B    3.C    4.B    5.A    6.B    7.B    8.D    9.C    10.C

          l1.A   12.C

          13.

          14.15

          15.

          16.

          提示:

          1.D   

          2.B    視力住0.9以上的頻率為,人數(shù)為

          3.C    ,且

                  若,則

                  反之,若,則

          4.B    ,由,得

          5.A   

          6.B   

          當(dāng)時(shí),,由

          當(dāng)時(shí),;

              當(dāng)時(shí),,由

          7.B    該幾何體是上面是正四棱錐,下面為正方體,體積為

          8.D   

          9.C    ,

          ,

          ,

          10.C  

          ,或

          1l.A   設(shè)

          方程為

          過點(diǎn)

          ,

          ,

          ,

           12.C  畫出平面區(qū)域,

          的圓心,半徑為l,

          的最大值為的最小值為

          的最大值為,最小值為

          13.

              ,   

          14.15  ;

             

             

          15.

             

             

             

          16.

              又

             

          17.解:(1),                          (2分)

          .                            (4分)

                  由余弦定理,得.                                (6分)

          (2),                                 (7分)

                (9分)                               (10分)

                                                   (11分)

                                      (12分)

          18.解:(1)的可能取值為l,2,3,4.

                 

                                                        (4分)

                  ∴甲取球次數(shù)的數(shù)學(xué)期望. (6分)

          (2)由題意,兩人各自從自己的箱子里任取一球比顏色

          共有(種)不同情形,                            (8分)

          每種情形都是等可能,記甲獲勝為事件A,則

                              (11分)

                  所以甲獲勝的概率小于乙獲勝的概率,這個(gè)游戲規(guī)則不公平           (12分)

          19.解:以為原點(diǎn),、、所在的直線為

          ,軸,建立如圖所示的空間直角坐標(biāo)系,

                              (3分)

          (1)

          即直線所成角的余角的余弦值為             (6分)

          (2)設(shè)

                  由平面

             得

          ,即的中點(diǎn).                                 (9分)

          (3)由(2)知為平面的法向量.

                  設(shè)為平面的法向量,

                 

                  由

          ,

          ,

          即二面角的余弦值為                (12分)

          (非向量解法參照給分)

          20.(1)解:成等比數(shù)列,,即

          ,                                         (3分)

                                       (5分)

          (2)證明: .                          (6分)

                  是首項(xiàng)為2,公差為2的等差數(shù)列,

                                                   (7分)

                 

                  (當(dāng)且僅當(dāng)時(shí)取“=”).                                                 ①              (9分)

                 

               當(dāng)且僅當(dāng)時(shí)取“=”.                     ②            (11分)

                  又①②中等號(hào)不可能同時(shí)取到,  (12分)

          21.解:(1)設(shè)

          對(duì)稱軸方程.由題意恒成立,                        (2分)

          在區(qū)間上單凋遞增,                                (3分)

                  ∴當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí)取得最小值與最大值.(4分)

          安徽高中數(shù)學(xué)網(wǎng)站注:這里用橢圓第二定義根簡(jiǎn)單直觀)

          (2)由已知與(1)得:,

          ,                                  (5分)

          ∴橢圓的標(biāo)準(zhǔn)方程為.                                 (6分)

          (3)設(shè),聯(lián)立

          .                             (7分)

          ,(8分)

          ∵橢圓的右頂點(diǎn)為,

                                                   (9分)

                  解得:,且均滿足,           (10分)

                  當(dāng)時(shí),的方程為,直線過定點(diǎn)(2,0),與已知矛盾.

          當(dāng)時(shí),的方程為,直線過定點(diǎn)(,0),       (11分)

          ∴直線過定點(diǎn),定點(diǎn)坐標(biāo)為(,0).                              (12分)

          22,解:(1)由題意:的定義域?yàn)?sub>,且

          ,故上是單調(diào)遞增函數(shù).          (2分)

          (2)由(1)可知:

          ① 若,則,即上恒成立,此時(shí)上為增函數(shù),

          (舍去).                       (4分)

          ② 若,則,即上恒成立,此時(shí)上為減函數(shù),

          (舍去).                 (6分)

                  ③ 若,令

                  當(dāng)時(shí),上為減函數(shù),

                  當(dāng)時(shí),上為增函數(shù),

                              (9分)

          綜上可知:.                                           (10分)(3)

                  又                                         (11分)

                  令,

                  上是減函數(shù),,即

                  上也是減函數(shù),

                  令,∴當(dāng)恒成立時(shí),.(14分)

           

           


          同步練習(xí)冊(cè)答案