日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  

          如圖,橢圓為橢圓的左、右頂點.

          (1)設(shè)為橢圓的左焦點,證明:當(dāng)且僅當(dāng)橢圓上的點在橢圓的左、右頂點時,取得最小值與最大值;

          (2)若橢圓上的點到焦點距離的最大值為3,最小值為l,求橢圓的標(biāo)準(zhǔn)方程;

          (3)若直線與(2)中所述橢圓相交于、兩點(、不是左右頂點),且滿是,求證:直線過定點,并求出該定點坐標(biāo).

           

           

           

           

           

          【答案】

           解:(1)設(shè)

          對稱軸方程.由題意恒成立,                        (2分)

          在區(qū)間上單凋遞增,                                (3分)

                  ∴當(dāng)且僅當(dāng)橢圓上的點在橢圓的左、右頂點時取得最小值與最大值.

          (注:這里用橢圓第二定義根簡單直觀)

          (2)由已知與(1)得:

          ,                                  (5分)

          ∴橢圓的標(biāo)準(zhǔn)方程為.                                 (6分)

          (3)設(shè),聯(lián)立

          .                             (7分)

          ,(8分)

          ∵橢圓的右頂點為,

                                                   (9分)

                  解得:,且均滿足,           (10分)

                  當(dāng)時,的方程為,直線過定點(2,0),與已知矛盾.

          當(dāng)時,的方程為,直線過定點(,0),    (11分)

          ∴直線過定點,定點坐標(biāo)為(,0).                           (12分)

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)如圖點P為橢圓
          x2
          9
          +
          y2
          5
          =1
          上的動點,A為橢圓的左頂點,F(xiàn)為右焦點.
          (Ⅰ)若∠AFP=60°,求PF所在直線被橢圓所截得的弦長|PQ|;
          (Ⅱ) )求PF中點M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:013

          如圖所示,以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓中心,交橢圓于點M、N,若直線MF1(F1為橢圓的左焦點)是圓F2的切線,則橢圓的離心率為

          [  ]

          A.

          B.

          C.

          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆四川成都六校協(xié)作體高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點.當(dāng)直線經(jīng)過橢圓的一個頂點時,其傾斜角恰為

          (Ⅰ)求該橢圓的離心率;

          (Ⅱ)設(shè)線段的中點為,的中垂線與軸和軸分別交于兩點,

          記△的面積為,△為原點)的面積為,求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,橢圓的左焦點為,過點的直線交橢圓于兩點.當(dāng)直線經(jīng)過橢圓的一個頂點時,其傾斜角恰為

          (Ⅰ)求該橢圓的離心率;

          (Ⅱ)設(shè)線段的中點為,的中垂線與軸和軸分別交于兩點,

          記△的面積為,△為原點)的面積為,求的取值范圍.

           


          查看答案和解析>>

          同步練習(xí)冊答案