日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.已知圓的最小值是 A.4 B.6 C.8 D.9 查看更多

           

          題目列表(包括答案和解析)

          已知圓的半徑為2,、是圓上兩點,是圓的一條直徑,點在圓內(nèi)且滿足,則的最小值為(  )

          A.-2              B.-1              C.-3              D.-4

           

          查看答案和解析>>

          已知圓的半徑為2,、是圓上兩點,,是圓的一條直徑,點在圓內(nèi)且滿足,則的最小值為(  )

          A.-2 B.-1 C.-3 D.-4

          查看答案和解析>>

          已知圓C1:x2+y2=1與圓C2:(x-2)2+(y-4)2=1,過動點P(a,b)分別作圓C1、圓C2的切線PM、PN(M、N分別為切點),若PM=PN,則
          a2+b2
          +
          (a-5)2+(b+1)2
          的最小值是
          34
          34

          查看答案和解析>>

          已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長為
          4
          5
          5
          ,且圓心M在直線l的下方.
          (1)求圓M的方程;
          (2)設(shè)A(t,0),B(t+5,0)(-4≤t≤-1),若AC,BC是圓M的切線,求△ABC面積的最小值.

          查看答案和解析>>

          已知圓C的圓心在坐標(biāo)原點,且過點M(1 , 
          3
          ).
          (1)求圓C的方程;
          (2)已知點P是圓C上的動點,試求點P到直線x+y-4=0的距離的最小值;
          (3)若直線l與圓C相切,且l與x,y軸的正半軸分別相交于A,B兩點,求△ABC的面積最小時直線
          l的方程.

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分。

          ABBD    DABD    BCCA

          二、填空題:本大題共4小題,每小題4分,共16分。

          13.    14.3    15.    16.①③

          三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

          17.解:(I)………2分

              依題意函數(shù)

              所以 …………4分

             

             (II)

             

          18.解:(I)由題意得:上年度的利潤的萬元;

              本年度每輛車的投入成本為萬元;

              本年度每輛車的出廠價為萬元;

              本年度年銷售量為 ………………2分

              因此本年度的利潤為

             

             (II)本年度的利潤為

             

          ………………7分

          (舍去)。  …………9分

            1. 19.(I)解:取CE中點P,連結(jié)FP、BP,

              ∵F為CD的中點,

              ∴FP//DE,且FP=

              又AB//DE,且AB=

              ∴AB//FP,且AB=FP,

              ∴ABPF為平行四邊形,∴AF//BP!2分

              又∵AF平面BCE,BP平面BCE,

              ∴AF//平面BCE。 …………4分

                 (II)∵△ACD為正三角形,∴AF⊥CD。

              ∵AB⊥平面ACD,DE//AB,

              ∴DE⊥平面ACD,又AF平面ACD,

              ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

              ∴AF⊥平面CDE。 …………6分

              又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

              ∴平面BCE⊥平面CDE。 …………8分

                 (III)由(II),以F為坐標(biāo)原點,F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標(biāo)系F―xyz.設(shè)AC=2,

              則C(0,―1,0),………………9分

               ……10分

              顯然,為平面ACD的法向量。

              設(shè)平面BCE與平面ACD所成銳二面角為

              ,即平面BCE與平面ACD所成銳二面角為45°!12分

              20.(I)證明:當(dāng)

              , …………3分

              , …………5分

              所以,的等比數(shù)列。 …………6分

                 (II)解:由(I)知, …………7分

              可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

              21.解:(I)解:由

              知點C的軌跡是過M,N兩點的直線,故點C的軌跡方程是:

                 (II)解:假設(shè)存在于D、E兩點,并以線段DE為直徑的圓都過原點。設(shè)

                  由題意,直線l的斜率不為零,

                  所以,可設(shè)直線l的方程為

                  代入 …………7分

                 

                  此時,以DE為直徑的圓都過原點。 …………10分

                  設(shè)弦DE的中點為

                 

              22.解:(I)函數(shù)

                   …………1分

                   …………2分

                  當(dāng)

                  列表如下:

              +

              0

              極大值

                  綜上所述,當(dāng);

                  當(dāng) …………5分

                 (II)若函數(shù)

                  當(dāng),

                  當(dāng),故不成立。 …………7分

                  當(dāng)由(I)知,且是極大值,同時也是最大值。

                  從而

                  故函數(shù) …………10分

                 (III)由(II)知,當(dāng)

                 

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>