日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 依題意.不等式g()>0對-1<≤0恒成立. 查看更多

           

          題目列表(包括答案和解析)

           D

          [解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          已知函數(shù)

          (1)若函數(shù)在其定義域內為單調遞增函數(shù),求實數(shù)的取值范圍。

          (2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。

          【解析】第一問中,利用導數(shù),因為在其定義域內的單調遞增函數(shù),所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。

          解:(1)

          因為在其定義域內的單調遞增函數(shù),

          所以 內滿足恒成立,即恒成立,

          亦即,

          即可  又

          當且僅當,即x=1時取等號,

          在其定義域內為單調增函數(shù)的實數(shù)k的取值范圍是.

          (2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

           上的增函數(shù),依題意需

          實數(shù)k的取值范圍是

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設,

          求導,得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(

           

          查看答案和解析>>

          已知數(shù)列的前項的和為,是等比數(shù)列,且,。

          ⑴求數(shù)列的通項公式;

          ⑵設,求數(shù)列的前項的和。

          ⑴   ,數(shù)列的前項的和為,求證:

          【解析】第一問利用數(shù)列

          依題意有:當n=1時,;

          時,

          第二問中,利用由得:,然后借助于錯位相減法

          第三問中

          結合均值不等式放縮得到證明。

           

          查看答案和解析>>


          同步練習冊答案