日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 布列及數(shù)學(xué)期望. 得分評(píng)卷人 查看更多

           

          題目列表(包括答案和解析)

          甲、乙兩人參加奧運(yùn)知識(shí)競(jìng)賽,假設(shè)甲、乙兩人答對(duì)每題的概率分別為
          2
          3
          3
          5
          ,且答對(duì)一題得1分,答不對(duì)得0分.
          (I)甲、乙兩人各答一題,求兩人得分之和ξ的分布列及數(shù)學(xué)期望;
          (II)甲、乙兩人各答兩題,每人每答一題記為一次,求這四次答題中至少有一次答對(duì)的概率.

          查看答案和解析>>

          (2013•浙江二模)某競(jìng)猜活動(dòng)有4人參加,設(shè)計(jì)者給每位參與者1道填空題和3道選擇題,答對(duì)一道填空題得2分,答對(duì)一道選擇題得1分,答錯(cuò)得0分,若得分總數(shù)大于或等于4分可獲得紀(jì)念品,假定參與者答對(duì)每道填空題的概率為
          1
          2
          ,答對(duì)每道選擇題的概率為
          1
          3
          ,且每位參與者答題互不影響.
          (Ⅰ)求某位參與競(jìng)猜活動(dòng)者得3分的概率;
          (Ⅱ)設(shè)參與者獲得紀(jì)念品的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          (2013•天河區(qū)三模)如圖,一個(gè)圓形游戲轉(zhuǎn)盤(pán)被分成6個(gè)均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),箭頭A所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個(gè)區(qū)域的邊界時(shí)重新轉(zhuǎn)動(dòng)),且箭頭A指向每個(gè)區(qū)域的可能性都是相等的.在一次家庭抽獎(jiǎng)的活動(dòng)中,要求每個(gè)家庭派一位兒童和一位成人先后分別轉(zhuǎn)動(dòng)一次游戲轉(zhuǎn)盤(pán),得分情況記為(a,b)(假設(shè)兒童和成人的得分互不影響,且每個(gè)家庭只能參加一次活動(dòng)).
          (Ⅰ)求某個(gè)家庭得分為(5,3)的概率?
          (Ⅱ)若游戲規(guī)定:一個(gè)家庭的得分為參與游戲的兩人得分之和,且得分大于等于8的家庭可以獲得一份獎(jiǎng)品.請(qǐng)問(wèn)某個(gè)家庭獲獎(jiǎng)的概率為多少?
          (Ⅲ)若共有5個(gè)家庭參加家庭抽獎(jiǎng)活動(dòng).在(Ⅱ)的條件下,記獲獎(jiǎng)的家庭數(shù)為X,求X的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          甲乙兩人進(jìn)行某種游戲比賽,規(guī)定每一次勝者得1分,負(fù)者得0分;當(dāng)其中一人的得分比另一人的多2分時(shí)即贏得這場(chǎng)游戲比賽,比賽隨之結(jié)束;同時(shí)規(guī)定比賽次數(shù)最多不超過(guò)10次,即經(jīng)10次比賽,得分多者贏得這場(chǎng)游戲,得分相等為和局.已知每次比賽甲獲勝的概率為p(0<p<1),乙獲勝的概率為q(q=1-p).假定各次比賽的結(jié)果是相互獨(dú)立的,比賽經(jīng)ξ次結(jié)束.
          (1)求ξ的分布列及數(shù)學(xué)期望Eξ.
          (2)求ξ的數(shù)學(xué)期望Eξ的取值范圍.

          查看答案和解析>>

          如圖,一個(gè)圓形游戲轉(zhuǎn)盤(pán)被分成6個(gè)均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),箭頭A所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個(gè)區(qū)域的邊界時(shí)重新轉(zhuǎn)動(dòng)),且箭頭A指向每個(gè)區(qū)域的可能性都是相等的.在一次家庭抽獎(jiǎng)的活動(dòng)中,要求每個(gè)家庭派一位兒童和一位成人先后分別轉(zhuǎn)動(dòng)一次游戲轉(zhuǎn)盤(pán),得分情況記為(a,b)(假設(shè)兒童和成人的得分互不影響,且每個(gè)家庭只能參加一次活動(dòng))

          (Ⅰ)求某個(gè)家庭得分為(5,3)的概率;

          (Ⅱ)若游戲規(guī)定:一個(gè)家庭的得分為參與游戲的兩人得分之和,且得分大于等于8的家庭可以獲得一份獎(jiǎng)品.求某個(gè)家庭獲獎(jiǎng)的概率;

          (Ⅲ)若共有5個(gè)家庭參加家庭抽獎(jiǎng)活動(dòng).在(Ⅱ)的條件下,記獲獎(jiǎng)的家庭數(shù)為X,求X的分布列及數(shù)學(xué)期望.

           

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.                  10.60                   11.   

          12.(1) (2)               13.1,                  14.,

          注:兩個(gè)空的填空題第一個(gè)空填對(duì)得2分,第二個(gè)空填對(duì)得3分.

          三、解答題(本大題共6小題,共80分)

          15.(本小題滿分13分)

          解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

          ,將(1)代入得.所以.

          于是有                             ………………3分

          解得                             ………………6分

          是遞增的,故.                   ………………7分

          所以.                                         ………………8分

             (Ⅱ),.                     ………………10分

          故由題意可得,解得.又, …………….12分

          所以滿足條件的的最小值為13.                           ………………13分

          16. (本小題滿分13分)

          解:(Ⅰ)由,

             所以.                     …………………4分

             于是. …………7分

            

          (Ⅱ)由正弦定理可得,

               所以.                                …………………….10分

          .         ………………11分

          ,

          解得.即=7 .                                           …………13分

          17.(本小題滿分14分)

          解法一:(Ⅰ)∵正方形,∴

          又二面角是直二面角,

          ⊥平面.

          平面,

          .

          ,是矩形,的中點(diǎn),

          =,,=,

          =,

          ⊥平面,

          平面,故平面⊥平面          ……………………5分

           (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

                  ∴∠與平面所成的角.                ……………………7分

          ∴在Rt△中,=.  

           .  

          與平面所成的角為 .                 ………………………9分

             (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

                  ∴∠為二面角的平面角.             ……………………….11分

          ∵在Rt△中,=,在Rt△中, .

          ∴在Rt△中,     ………13分

          即二面角的大小為arcsin.          ………………………………14分

           

          解法二:

          如圖,以為原點(diǎn)建立直角坐標(biāo)系,

          (0,0,0),(0,2,0),

          (0,2,2),,,0),

          ,0,0).

             (Ⅰ) =(,0),=(,,0),

                   =(0,0,2),

          ?=(,0)?(,0)=0,

           ? =(,,0)?(0,0,2)= 0.

          ,,

          ⊥平面,又平面,故平面⊥平面. ……5分

             (Ⅱ)設(shè)與平面所成角為.

                  由題意可得=(,,0),=(0,2,2 ),=(,0).

                  設(shè)平面的一個(gè)法向量為=(,1),

                  由.

                    .

          與平面所成角的大小為.            ……………..9分

             (Ⅲ)因=(1,-1,1)是平面的一個(gè)法向量,

                  又⊥平面,平面的一個(gè)法向量=(,0,0),

                  ∴設(shè)的夾角為,得,

                  ∴二面角的大小為.      ………………………………14分

          18. (本小題滿分13分)

          解:(Ⅰ)設(shè)事件表示甲運(yùn)動(dòng)員射擊一次,恰好擊中9環(huán)以上(含9環(huán)),則

          .                            ……………….3分

          甲運(yùn)動(dòng)員射擊3次均未擊中9環(huán)以上的概率為

          .                            …………………5分

          所以甲運(yùn)動(dòng)員射擊3次,至少有1次擊中9環(huán)以上的概率為

          .                               ………………6分

              (Ⅱ)記乙運(yùn)動(dòng)員射擊1次,擊中9環(huán)以上為事件,則

                                  …………………8分

          由已知的可能取值是0,1,2.                       …………………9分

          ;

          ;

          .

          的分布列為

          0

          1

          2

          0.05

          0.35

          0.6

                                                         ………………………12分

          所以

          故所求數(shù)學(xué)期望為.                          ………………………13分

          19. (本小題滿分14分)

          解:(Ⅰ)由已知 ,故,所以直線的方程為.

                將圓心代入方程易知過(guò)圓心 .      …………………………3分

                  (Ⅱ) 當(dāng)直線軸垂直時(shí),易知符合題意;        ………………4分

          當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,由于,

          所以,解得.

          故直線的方程為.        ………………8分

                  (Ⅲ)當(dāng)軸垂直時(shí),易得,,又

          ,故. 即.                   ………………10分

          當(dāng)的斜率存在時(shí),設(shè)直線的方程為,代入圓的方程得

          .則

          ,即,

          .又由,

          .

          .

          綜上,的值為定值,且.                …………14分

          另解一:連結(jié),延長(zhǎng)交于點(diǎn),由(Ⅰ)知.又,

          故△∽△.于是有.


          同步練習(xí)冊(cè)答案