日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅲ)設(shè),試問(wèn)是否為定值,若為定值.請(qǐng)求出的值,若不為定值.請(qǐng)說(shuō)明理由. 得分評(píng)卷人 查看更多

           

          題目列表(包括答案和解析)

          (文)設(shè)F1、F2分別為橢圓C:
          x2
          m2
          +
          y2
          n2
          =1
          (m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,
          3
          2
          )到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
          (2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
          PF1
          PF2
          =0
          ,求△PF1F2的面積.
          (3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)是否具有類(lèi)似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          (2012•嘉定區(qū)三模)設(shè)向量
          a
          =(x , 2)
          ,
          b
          =(x+n , 2x-1)
          (n∈N*),函數(shù)y=
          a
          b
          在x∈[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿(mǎn)足b1=1,b1+b2+…+bn=(
          9
          10
          )n-1

          (1)求證:an=n+1;
          (2)求數(shù)列{bn}的通項(xiàng)公式;
          (3)設(shè)cn=-an•bn,試問(wèn)數(shù)列{cn}中,是否存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有cn≤ck成立?若存在,求出所有滿(mǎn)足條件的k的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          設(shè)函數(shù),是定義域?yàn)镽上的奇函數(shù).

          (1)求的值,并證明當(dāng)時(shí),函數(shù)是R上的增函數(shù);

          (2)已知,函數(shù),,求的值域;

          (3)若,試問(wèn)是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

           

          查看答案和解析>>

          設(shè)函數(shù),是定義域?yàn)镽上的奇函數(shù).
          (1)求的值,并證明當(dāng)時(shí),函數(shù)是R上的增函數(shù);
          (2)已知,函數(shù),,求的值域;
          (3)若,試問(wèn)是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          設(shè)函數(shù)是定義域?yàn)镽上的奇函數(shù).
          (1)求的值,并證明當(dāng)時(shí),函數(shù)是R上的增函數(shù);
          (2)已知,函數(shù),,求的值域;
          (3)若,試問(wèn)是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.D      2.A      3.B      4.C       5.D      6.B     7.C      8. A

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.點(diǎn)               10.               11. 6 , 60

          12.                13.                   14. ,

          注:兩個(gè)空的填空題第一個(gè)空填對(duì)得2分,第二個(gè)空填對(duì)得3分.

          三、解答題(本大題共6小題,共80分)

          15. (本小題滿(mǎn)分13分)

          解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

          ,將(1)代入得.所以.  ……………3分

          于是有                             ………………4分

          解得                             ………………6分

          是遞增的,故.                   ………………7分

          所以.                                         ………………9分

             (Ⅱ).                                …………………11分

          .                                       ………………13分

          16.(本小題滿(mǎn)分13分)

          解:(Ⅰ)在△中,由.

             所以.            …………………5分

          (Ⅱ)由.  ………………………………….9分

          ,=;          ………………………11分

          于是有,解得.           ……………………………13分

           

          17.(本小題滿(mǎn)分14分)

          解法一:(Ⅰ)∵正方形,∴

          又二面角是直二面角,

          ⊥平面.

          平面,

          .

          ,,是矩形,的中點(diǎn),

          =,=,

          =

          ⊥平面,

          平面,故平面⊥平面.          ……………………5分

           (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

                  ∴∠與平面所成的角.

          ∴在Rt△中,=.  

           .                            

          與平面所成的角為 .                 ………………………9分

             (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

                  ∴∠為二面角的平面角.                 …………….11分

          ∵在Rt△中,=,在Rt△中,.

          ∴在Rt△中,

          即二面角的大小為arcsin.    ………………………………14分

          解法二:

          如圖,以為原點(diǎn)建立直角坐標(biāo)系,

          (0,0,0),(0,2,0),

          (0,2,2),,,0),

          ,0,0).

             (Ⅰ) =(,,0),=(,0),

                   =(0,0,2),

          ?=(,,0)?(,0)=0,

           ? =(,,0)?(0,0,2)= 0.

          ,,

          ⊥平面,又平面,故平面⊥平面.     ……5分

             (Ⅱ)設(shè)與平面所成角為.

                  由題意可得=(,0),=(0,2,2 ),=(,,0).

                  設(shè)平面的一個(gè)法向量為=(,,1),

                  由.

                    .

          與平面所成角的大小為.            ……………..9分

             (Ⅲ)因=(1,-1,1)是平面的一個(gè)法向量,

                  又⊥平面,平面的一個(gè)法向量=(,0,0),

                  ∴設(shè)的夾角為,得,

                  ∴二面角的大小為.         ………………………………14分

          18. (本小題滿(mǎn)分13分)

          解: (Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率

                 .                                     ………………4分

            (Ⅱ) 設(shè)事件表示“甲運(yùn)動(dòng)員射擊一次,擊中9環(huán)以上(含9環(huán))”, 記“乙運(yùn)動(dòng)員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件,則

          .                           ………………………6分

          .                          ………………………8分

          “甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個(gè)事件,顯然,這兩個(gè)事件互斥.

          甲擊中2次、乙擊中1次的概率為

          ;            ……………………..10分

          甲擊中1次、乙擊中2次的概率為

          .             …………………12分

          所以所求概率為.                      

          答: 甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為.  ……….13分

                                                                

          19.(本小題滿(mǎn)分14分)

          解: (Ⅰ) 由已知 , 又圓心,則 .故   .

            所以直線垂直.                        ………………………3分

                  (Ⅱ) 當(dāng)直線軸垂直時(shí),易知符合題意;        ………………4分

          當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為.   …………5分

          由于,所以

          ,解得.         ………………7分

          故直線的方程為.          ………………8分

                   (Ⅲ)當(dāng)軸垂直時(shí),易得,,又

          ,故.                    ………………10分

          當(dāng)的斜率存在時(shí),設(shè)直線的方程為,代入圓的方程得

          .則

          ,即,

          .又由,

          .

          .

          綜上,的值與直線的斜率無(wú)關(guān),且.    …………14分

          另解一:連結(jié),延長(zhǎng)交于點(diǎn),由(Ⅰ)知.又,

          故△∽△.于是有.

                         ………………………14分

          另解二:連結(jié)并延長(zhǎng)交直線于點(diǎn),連結(jié)由(Ⅰ)知,

          所以四點(diǎn)

          同步練習(xí)冊(cè)答案