日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又平面.所以平面---------------- 4分 查看更多

           

          題目列表(包括答案和解析)

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當時,求證:;

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是的中點.

          (I)求證:平面;

          (II)求證:

          (III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.

          【解析】第一問利用線面平行的判定定理,,得到

          第二問中,利用,所以

          又因為,,從而得

          第三問中,借助于等體積法來求解三棱錐B-EFC的體積.

          (Ⅰ)證明: 分別是的中點,    

          ,.       …4分

          (Ⅱ)證明:四邊形為正方形,

          ,

          , ,

          .    ………8分

          (Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

           

          查看答案和解析>>

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

          【解析】第一問中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

          因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          如圖所示的長方體中,底面是邊長為的正方形,的交點,是線段的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大小.

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

          (3)因為∴為面的法向量.∵,,

          為平面的法向量.∴利用法向量的夾角公式,,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、

          ,又點,,∴

          ,且不共線,∴

          平面,平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,即,,

          ,∴平面.   ………8分

          (Ⅲ)∵,∴平面,

          為面的法向量.∵,

          為平面的法向量.∴,

          的夾角為,即二面角的大小為

           

          查看答案和解析>>

           

          已知函數(shù).

          (Ⅰ)討論函數(shù)的單調(diào)性; 

          (Ⅱ)設(shè),證明:對任意,.

              1.選修4-1:幾何證明選講

              如圖,的角平分線的延長線交它的外接圓于點

          (Ⅰ)證明:∽△;

          (Ⅱ)若的面積,求的大小.

          證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

          因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

          故△ABE∽△ADC.

          (Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

          SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

          則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.

           

          查看答案和解析>>


          同步練習冊答案