日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 25.解:⑴正電荷 ⑵依題意可知小球在BC間做勻速直線運(yùn)動(dòng). 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          某廠制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),為了給每臺(tái)裝置裝配一個(gè)外殼,要從兩種不同規(guī)格的薄鋼板上截。阎追N薄鋼板每張面積為2m2,可做A種外殼3個(gè)和B種外殼5個(gè);乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個(gè),用這兩種薄鋼板各多少?gòu)垼拍苁箍偟挠昧厦娣e最?(請(qǐng)根據(jù)題意,在下面的橫線處按要求填上恰當(dāng)?shù)年P(guān)系式或數(shù)值)
          解:設(shè)用甲、乙兩種薄鋼板各x張,y張,
          則可做A種外殼
          3x+6y
          3x+6y
          個(gè),B種外殼
          5x+6y
          5x+6y
          個(gè),所用鋼板的總面積為z=
          2x+3y
          2x+3y
          (m2)依題得線性約束條件為:
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          作出線性約束條件對(duì)應(yīng)的平面區(qū)域如圖(用陰影表示)依圖可知,目標(biāo)函數(shù)取得最小值的點(diǎn)為
          (5,5)
          (5,5)
          ,且最小值z(mì)min=
          25
          25
          (m2

          查看答案和解析>>

          已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

          【解析】第一問(wèn)當(dāng)時(shí),,則。

          依題意得:,即    解得

          第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,!上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增。∴最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無(wú)解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          在本次數(shù)學(xué)期中考試試卷中共有10道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的。評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分”.某考生每道題都給出一個(gè)答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜。試求出該考生:

          (1)選擇題得滿分(50分)的概率;

          (2)選擇題所得分?jǐn)?shù)的數(shù)學(xué)期望。

          【解析】第一問(wèn)總利用獨(dú)立事件的概率乘法公式得分為50分,10道題必須全做對(duì).在其余的3道題中,有1道題答對(duì)的概率為,有1道題答對(duì)的概率為,還有1道答對(duì)的概率為

          所以得分為50分的概率為:

          第二問(wèn)中,依題意,該考生得分的范圍為{35,40,45,50}         

          得分為35分表示只做對(duì)了7道題,其余各題都做錯(cuò),

          所以概率為                            

          得分為40分的概率為: 

          同理求得,得分為45分的概率為: 

          得分為50分的概率為:

          得到分布列和期望值。

          解:(1)得分為50分,10道題必須全做對(duì).在其余的3道題中,有1道題答對(duì)的概率為,有1道題答對(duì)的概率為,還有1道答對(duì)的概率為,

          所以得分為50分的概率為:                   …………5分

          (2)依題意,該考生得分的范圍為{35,40,45,50}            …………6分

          得分為35分表示只做對(duì)了7道題,其余各題都做錯(cuò),

          所以概率為                              …………7分

          得分為40分的概率為:     …………8分

          同理求得,得分為45分的概率為:                     …………9分

          得分為50分的概率為:                      …………10分

          所以得分的分布列為

          35

          40

          45

          50

           

          數(shù)學(xué)期望

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實(shí)數(shù)a的取值范圍;

          (2)比較的大小,說(shuō)明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問(wèn)中,利用

          解:(1)由已知:,依題意得:≥0對(duì)x∈[1,+∞恒成立

          ∴ax-1≥0對(duì)x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時(shí):f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案