日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求導(dǎo)數(shù)(x), 查看更多

           

          題目列表(包括答案和解析)

          (1)求f(x)=
          lnx+2x
          x2
          的導(dǎo)數(shù);
          (2)求過(guò)曲線y=cosx上點(diǎn)P(
          π
          3
          ,
          1
          2
          )
          且與過(guò)這點(diǎn)的切線垂直的直線方程.

          查看答案和解析>>

          設(shè)f(x)是定義在(0,+∞)上的單調(diào)可導(dǎo)函數(shù).已知對(duì)于任意正數(shù)x,都有f[f(x)+
          2
          x
          ]=
          1
          f(x)
          ,且f(1)=a>0.
          (Ⅰ)求f(a+2),并求a的值;
          (Ⅱ)令an=
          1
          f(n)
          ,n∈N*
          ,證明:數(shù)列{an}是等差數(shù)列.

          查看答案和解析>>

          (1)求y=x(x2+
          1
          x
          +
          1
          x3
          )
          的導(dǎo)數(shù);
          (2)求y=(
          x
          +1)(
          1
          x
          -1)
          的導(dǎo)數(shù);
          (3)求y=x-sin
          x
          2
          cos
          x
          2
          的導(dǎo)數(shù);
          (4)求y=
          x2
          sinx
          的導(dǎo)數(shù);
          (5)求y=
          3x2-x
          x
          +5
          x
          -9
          x
          的導(dǎo)數(shù)分

          查看答案和解析>>

          設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a),設(shè)函數(shù)f(x)=lnx+
          b+2x+1
          (x>1)
          ,其中b為實(shí)數(shù).
          (1)①求證:函數(shù)f(x)具有性質(zhì)P(b);
          ②求函數(shù)f(x)的單調(diào)區(qū)間.
          (2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

          查看答案和解析>>

          精英家教網(wǎng)設(shè)f(x)=ax3+bx2+cx的極小值為-8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)點(diǎn)(-2,0),(
          23
          ,0)
          ,如圖所示,
          (1)求f(x)的解析式;
          (2)若對(duì)x∈[-3,3]都有f(x)≥m2-14m恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

           

          一、選擇題

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          A

          B

          A

          B

          C

          D

          A

          D

          C

          A

          B

          D

           

          二、填空題

          13. 165    14. 3   15. 36π    16. 6ec8aac122bd4f6e

          三、解答題

          17. 解:(1)6ec8aac122bd4f6e6ec8aac122bd4f6e

          =6ec8aac122bd4f6e………………………….2分

          =6ec8aac122bd4f6e.………………………………………4分

            1. 20090327

              (2)要使函數(shù)6ec8aac122bd4f6e為偶函數(shù),只需

                 6ec8aac122bd4f6e 即6ec8aac122bd4f6e………….8分

                 因?yàn)?sub>6ec8aac122bd4f6e,

                 所以6ec8aac122bd4f6e.………………………………………………………10分

              18.解:(1)6ec8aac122bd4f6e.………………………….4分

              (2)由題意知n的取值為2,3,4,5,6.

              6ec8aac122bd4f6e,  6ec8aac122bd4f6e,

              6ec8aac122bd4f6e

              6ec8aac122bd4f6e.    …10分

              所以6ec8aac122bd4f6e等于5時(shí)6ec8aac122bd4f6e最大,最大值為     

              6ec8aac122bd4f6e.…. …………12分 

              19.解:(Ⅰ)過(guò)6ec8aac122bd4f6e點(diǎn)作6ec8aac122bd4f6e6ec8aac122bd4f6e,由正三棱柱性質(zhì)知,

              6ec8aac122bd4f6e平面6ec8aac122bd4f6e,………2分

              連接6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影.

              6ec8aac122bd4f6e   6ec8aac122bd4f6e,

              6ec8aac122bd4f6e6ec8aac122bd4f6e,……………4分

              6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e中點(diǎn),又6ec8aac122bd4f6e,所以6ec8aac122bd4f6e6ec8aac122bd4f6e的中點(diǎn)即6ec8aac122bd4f6e.………………6分

              (2)過(guò)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,連結(jié)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

              6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e為二面角

              6ec8aac122bd4f6e6ec8aac122bd4f6e的平面角. ………………9分

              6ec8aac122bd4f6e中,由6ec8aac122bd4f6e=6ec8aac122bd4f6e,

              6ec8aac122bd4f6e,得

              6ec8aac122bd4f6e.

              所以二面角6ec8aac122bd4f6e

              平面角的正切值為6ec8aac122bd4f6e.…………12分

              20.解:(1)由6ec8aac122bd4f6e

                  6ec8aac122bd4f6e………………………….2分

              6ec8aac122bd4f6e………………………….………………………….3分

              所以數(shù)列6ec8aac122bd4f6e是首項(xiàng)為6ec8aac122bd4f6e,公比為2的等比數(shù)列.

              所以數(shù)列6ec8aac122bd4f6e的通項(xiàng)公式6ec8aac122bd4f6e.………………………………6分

              (2)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e..………………… 8分

              所以6ec8aac122bd4f6e=6ec8aac122bd4f6e

                        =6ec8aac122bd4f6e…………..………………………………12分

              21.解:(1)6ec8aac122bd4f6e.……………………………2分

              (2)由6ec8aac122bd4f6e,

              6ec8aac122bd4f6e6ec8aac122bd4f6e或x=6ec8aac122bd4f6e,.……………………………4分

              6ec8aac122bd4f6e

              6ec8aac122bd4f6e在[-2,2]上最大值6ec8aac122bd4f6e,最小值6ec8aac122bd4f6e..……………………………8分

              (3)6ec8aac122bd4f6e, 由題意知

              6ec8aac122bd4f6e...……………………12分

              22.解:(Ⅰ)設(shè)6ec8aac122bd4f6e,

              因?yàn)閽佄锞的焦點(diǎn)6ec8aac122bd4f6e,

              6ec8aac122bd4f6e.……………………………1分

              6ec8aac122bd4f6e,………2分

              6ec8aac122bd4f6e,而點(diǎn)A在拋物線上,

              6ec8aac122bd4f6e.……………………………………4分

              6ec8aac122bd4f6e故所求拋物線的方程為6ec8aac122bd4f6e.6分

              (2)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,顯然直線6ec8aac122bd4f6e,6ec8aac122bd4f6e的斜率都存在且都不為0.

              設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,則6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.

                  由 6ec8aac122bd4f6e6ec8aac122bd4f6e,同理可得6ec8aac122bd4f6e.……………8分

              6ec8aac122bd4f6e

              =6ec8aac122bd4f6e6ec8aac122bd4f6e.(當(dāng)且僅當(dāng)6ec8aac122bd4f6e時(shí)取等號(hào))

              所以6ec8aac122bd4f6e的最小值是8.……………………………………12分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>