日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由NE⊥面PAC可得即 查看更多

           

          題目列表(包括答案和解析)

          如圖,長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn)。

          (Ⅰ)證明: ;

          (Ⅱ)如果=2 ,=,, 求 的長(zhǎng)。

           【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

          (Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長(zhǎng)為。

           

          查看答案和解析>>

          (2001•上海)已知兩個(gè)圓:x2+y2=1 ①;x2+(y-3)2=1 ②,則由①式減去②式可得上述兩個(gè)圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例,推廣的命題為
          設(shè)圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
          由①-②,得兩圓的對(duì)稱軸方程
          設(shè)圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
          由①-②,得兩圓的對(duì)稱軸方程

          查看答案和解析>>

          (1)若m,n∈R,由m2+n2≥2mn可得2(m2+n2)≥m2+n2+2mn,即有2(m2+n2)≥(m+n)2;
          (2)已知x>0,y>0,且x+y=1,利用(1)中不等式,求
          x+
          1
          2
          +
          y+
          1
          2
          的最大值并求出對(duì)應(yīng)的x,y的值.

          查看答案和解析>>

          拓展探究題
          (1)已知兩個(gè)圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例.推廣的命題為
          已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程
          已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程

          (2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
          3
          2
          倍”,請(qǐng)你寫出此命題在立體幾何中類似的真命題:
          正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
          6
          3
          正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
          6
          3

          查看答案和解析>>

          已知兩個(gè)圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對(duì)稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特別,推廣的命題為:         .

          查看答案和解析>>


          同步練習(xí)冊(cè)答案