日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22.(1)由已知得a+b=4------------------2分∵f ' (x)=3ax2+2bx ∴f ' (1)=3a+2b 依題意得:3a+2b=9--4分解得a=1 b=3----------------------6分=x3+3x2 f ' (x)=3x2+6x--------------7分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

          (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          已知2≤a+b≤4,1≤a-b≤2.求3a-2b的取值范圍.

          查看答案和解析>>

          研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
          解:由cx2-bx+a>0且x≠0,所以
          (c×2-bx+a)
          x2
          >0得a(
          1
          x
          2-
          b
          x
          +c>0,設(shè)
          1
          x
          =y,得ay2-by+c>0,由已知得:1<y<2,即1<
          1
          x
          <2,∴
          1
          2
          <x<1所以不等式cx2-bx+a>0的解集是(
          1
          2
          ,1).
          參考上述解法,解決如下問題:已知關(guān)于x的不等式
          b
          (x+a)
          +
          (x+c)
          (x+d)
          <0的解集是:(-3,-1)∪(2,4),則不等式
          bx
          (ax-1)
          +
          (cx-1)
          (dx-1)
          <0的解集是
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實數(shù)a的取值范圍;

          (2)比較的大小,說明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問中,利用

          解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

          ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時:f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          在平面直角坐標系xOy中,已知定點A(-4,0),B(0,-2),半徑為r的圓M的圓心M在線段AB的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為
          3
          r

          (1)若r為正常數(shù),求圓M的方程;
          (2)當(dāng)r變化時,是否存在定直線l與圓相切?如果存在求出定直線l的方程;如果不存在,請說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案