日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .即, ∴在上是增函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。

          (1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調遞增.……10分

          ,即

           

          查看答案和解析>>

          對于函數(shù)y=Asin(ωx+φ)(A、ω、φ均為不等于0的常數(shù)),有以下說法:①最大值為A;②最小正周期為||;③在[0,2π]上至少存在一個x,使y=0;④由2kπ-≤ωx+φ≤2kπ+(k∈Z)解得x的區(qū)間范圍即為原函數(shù)的單調增區(qū)間,其中正確的說法是(    )

          A.①②③                B.①②               C.②                D.②④

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調區(qū)間;

          (Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

          第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

          (II)若對任意不等式恒成立,

          問題等價于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

          故也是最小值點,所以;            ............6分

          當b<1時,;

          時,

          當b>2時,;             ............8分

          問題等價于 ........11分

          解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

           

          查看答案和解析>>

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)m的取值范圍;

          【解析】第一問中利用導數(shù)

          又f(x)在x=1處取得極值2,所以,

          所以

          第二問中,

          因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得

          解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得,                …………9分

          當f(x)在區(qū)間(m,2m+1)上單調遞減,則有 

                                                          …………12分

          .綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數(shù)m的取值范圍是

           

          查看答案和解析>>

          已知函數(shù),(),

          (1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

          (2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍

          【解析】(1), 

          ∵曲線與曲線在它們的交點(1,c)處具有公共切線

          ,

          (2)當時,,

          ,則,令,為單調遞增區(qū)間,為單調遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點,所以

          【考點定位】此題應該說是導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調性,極值以及最值問題都是課本中要求的重點內容,也是學生掌握比較好的知識點,在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點,比較重要

           

          查看答案和解析>>


          同步練習冊答案