日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 曲線的方程可寫成:.∴ 查看更多

           

          題目列表(包括答案和解析)

          設(shè)x,y滿足如下條件:以為三邊可構(gòu)成銳角三角形,在直角坐標(biāo)平面上可以作出所有這樣的以(x,y)為坐標(biāo)的點(diǎn)集,則限定這個點(diǎn)集的曲線方程為(寫出最簡形式):   

          查看答案和解析>>

          設(shè)x,y滿足如下條件:以數(shù)學(xué)公式為三邊可構(gòu)成銳角三角形,在直角坐標(biāo)平面上可以作出所有這樣的以(x,y)為坐標(biāo)的點(diǎn)集,則限定這個點(diǎn)集的曲線方程為(寫出最簡形式):________.

          查看答案和解析>>

          設(shè)x,y滿足如下條件:以1 , |x| , 
          -y
          為三邊可構(gòu)成銳角三角形,在直角坐標(biāo)平面上可以作出所有這樣的以(x,y)為坐標(biāo)的點(diǎn)集,則限定這個點(diǎn)集的曲線方程為(寫出最簡形式):
          y=-x2-1,y=-x2+1,y=x2-1
          y=-x2-1,y=-x2+1,y=x2-1

          查看答案和解析>>

          拓展探究題
          (1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為
          已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
          已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

          (2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長的
          3
          2
          倍”,請你寫出此命題在立體幾何中類似的真命題:
          正四面體內(nèi)任意一點(diǎn)到四個面的距離之和是一個定值,大小為棱長的
          6
          3
          正四面體內(nèi)任意一點(diǎn)到四個面的距離之和是一個定值,大小為棱長的
          6
          3

          查看答案和解析>>

          拓展探究題
          (1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為______.
          (2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長的
          3
          2
          倍”,請你寫出此命題在立體幾何中類似的真命題:______.

          查看答案和解析>>


          同步練習(xí)冊答案