日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (III) 證明:∵是方程的兩根. 查看更多

           

          題目列表(包括答案和解析)

          二次函數(shù)f(x)=

          (I)若方程f(x)=0無(wú)實(shí)數(shù)根,求證:b>0;

          (II)若方程f(x)=0有兩實(shí)數(shù)根,且兩實(shí)根是相鄰的兩個(gè)整數(shù),求證:f(-a)=;

          (III)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得.

          查看答案和解析>>

          二次函數(shù)f(x)=
          (I)若方程f(x)=0無(wú)實(shí)數(shù)根,求證:b>0;
          (II)若方程f(x)=0有兩實(shí)數(shù)根,且兩實(shí)根是相鄰的兩個(gè)整數(shù),求證:f(-a)=;
          (III)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得.

          查看答案和解析>>

          已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
          (I)討論函數(shù)的單調(diào)區(qū)間;
          (II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
          (III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問(wèn)是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對(duì)任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
          (I)討論函數(shù)的單調(diào)區(qū)間;
          (II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
          (III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問(wèn)是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對(duì)任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          (2012•綿陽(yáng)三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
          (I)討論函數(shù)的單調(diào)區(qū)間;
          (II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
          (III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問(wèn)是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對(duì)任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

           

          1.(1)因?yàn)?sub>,所以

                又是圓O的直徑,所以

                又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

                所以所以

                又因?yàn)?sub>,所以相似

                所以,即

            (2)因?yàn)?sub>,所以,

                 因?yàn)?sub>,所以

                 由(1)知:。所以

                 所以,即圓的直徑

                 又因?yàn)?sub>,即

               解得

          2.依題設(shè)有:

           令,則

           

           

          3.將極坐標(biāo)系內(nèi)的問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問(wèn)題

            點(diǎn)的直角坐標(biāo)分別為

            故是以為斜邊的等腰直角三角形,

            進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

                ,即

            將代入上述方程,得

            ,即

          4.假設(shè),因?yàn)?sub>,所以。

          又由,則

          所以,這與題設(shè)矛盾

          又若,這與矛盾

          綜上可知,必有成立

          同理可證也成立

          命題成立

          5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

          1°.當(dāng)n=1時(shí),命題顯然成立;

          2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

          即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

          則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

          =( k+1)(k+1+1)(k+1+2)(k+1+3)

          即命題對(duì)n=k+1.成立

          由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

          6.(1)因?yàn)?sub>,,

                ,所以

                 故事件A與B不獨(dú)立。

             (2)因?yàn)?sub>

                

                 所以

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案