日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)是曲線段OC上的任意一點(diǎn).則在矩 形PQBN中. 查看更多

           

          題目列表(包括答案和解析)

          已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則
          AP
          BP
          的最小值是
          -
          1
          5
          -
          1
          5

          查看答案和解析>>

          已知
          OA
          =(1,7),
          OB
          =(3,1),D為線段AB的中點(diǎn),設(shè)M為線段OD上的任意一點(diǎn),(O為坐標(biāo)原點(diǎn)),求
          MA
          MB
          的取值范圍.

          查看答案和解析>>

          已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則
          AP
          BP
          的最小值是______.

          查看答案和解析>>

          已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則的最小值是   

          查看答案和解析>>

          已知=(1,7),=(3,1),D為線段AB的中點(diǎn),設(shè)M為線段OD上的任意一點(diǎn),(O為坐標(biāo)原點(diǎn)),求的取值范圍.

          查看答案和解析>>

           

          1.(1)因?yàn)?sub>,所以

                又是圓O的直徑,所以

                又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

                所以所以

                又因?yàn)?sub>,所以相似

                所以,即

            (2)因?yàn)?sub>,所以

                 因?yàn)?sub>,所以

                 由(1)知:。所以

                 所以,即圓的直徑

                 又因?yàn)?sub>,即

               解得

          2.依題設(shè)有:

           令,則

           

           

          3.將極坐標(biāo)系內(nèi)的問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問(wèn)題

            點(diǎn)的直角坐標(biāo)分別為

            故是以為斜邊的等腰直角三角形,

            進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

                ,即

            將代入上述方程,得

            ,即

          4.假設(shè),因?yàn)?sub>,所以。

          又由,則,

          所以,這與題設(shè)矛盾

          又若,這與矛盾

          綜上可知,必有成立

          同理可證也成立

          命題成立

          5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

          1°.當(dāng)n=1時(shí),命題顯然成立;

          2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

          即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

          則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

          =( k+1)(k+1+1)(k+1+2)(k+1+3)

          即命題對(duì)n=k+1.成立

          由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

          6.(1)因?yàn)?sub>,

                ,所以

                 故事件A與B不獨(dú)立。

             (2)因?yàn)?sub>

                

                 所以

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案