日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)由得由(1)知在上遞減.在上遞增. 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)是定義在上的奇函數(shù),且

          (1)求實數(shù)a,b,并確定函數(shù)的解析式;

          (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

          (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且

          解得,

          (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

          (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,,當(dāng)x=1時,

          解:(1)是奇函數(shù),。

          ,………………2分

          ,又,,

          (2)任取,且,

          ,………………6分

          ,

          ,,,

          在(-1,1)上是增函數(shù)!8分

          (3)單調(diào)減區(qū)間為…………………………………………10分

          當(dāng),x=-1時,,當(dāng)x=1時,。

           

          查看答案和解析>>

          已知函數(shù),a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,)上單調(diào)遞減,在(,上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減。

          (1)求的值;

          (2)若斜率為24的直線是曲線的切線,求此直線方程;

          (3)是否存在實數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有2個不同交點?若存在,求出實數(shù)b的值;若不存在,試說明理由.

           

          查看答案和解析>>

          已知函數(shù)在區(qū)間[0,1]單調(diào)遞增,在區(qū)間[1,2)單調(diào)遞減.

          (1)求a的值;

          (2)若點在函數(shù)f(x)的圖象上,求證點A關(guān)于直線x=1的對稱點B也在函數(shù)f(x)的圖象上;

          (3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有3個交點,若存在,請求出實數(shù)b的值;若不存在,試說明理由.

          查看答案和解析>>

          已知

          (1)求函數(shù)上的最小值

          (2)對一切的恒成立,求實數(shù)a的取值范圍

          (3)證明對一切,都有成立

          【解析】第一問中利用

          當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

          第二問中,,則設(shè)

          ,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立, 

          第三問中問題等價于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

          解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                           …………4分

          (2),則設(shè),

          單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

          (3)問題等價于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

           

          查看答案和解析>>


          同步練習(xí)冊答案