日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22 查看更多

           

          題目列表(包括答案和解析)

           (22) (本小題滿(mǎn)分14分)

          如圖,橢圓ab>0)的一個(gè)焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(2,0).

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線(xiàn)l:x=4與x軸交于點(diǎn)N,直線(xiàn)AFBN交于點(diǎn)M.

           (ⅰ)求證:點(diǎn)M恒在橢圓C上;

          (ⅱ)求△AMN面積的最大值.

          查看答案和解析>>

          (本小題12分)

          已知某商品的價(jià)格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):

          14

          16

          18

          20

          22

          12

          10

          7

          5

          3

          (1)畫(huà)出關(guān)于的散點(diǎn)圖

          (2)用最小二乘法求出回歸直線(xiàn)方程

          (3)計(jì)算的值,并說(shuō)明回歸模型擬合程度的好壞。

           

          查看答案和解析>>

          (本小題12分)
          已知某商品的價(jià)格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):


          14
          16
          18
          20
          22

          12
          10
          7
          5
          3
          (1)畫(huà)出關(guān)于的散點(diǎn)圖
          (2)用最小二乘法求出回歸直線(xiàn)方程
          (3)計(jì)算的值,并說(shuō)明回歸模型擬合程度的好壞。

          查看答案和解析>>

          (本小題滿(mǎn)分14分)

          某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

          日    期

          1月10日

          2月10日

          3月10日

          4月10日

          5月10日

          6月10日

          晝夜溫差x(°C)

          10

          11

          13

          12

          8

          6

          就診人數(shù)y(個(gè))

          22

          25

          29

          26

          16

          12

              該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

              (Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;(5分)

              (Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;(6分)

              (Ⅲ)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)該小組所得線(xiàn)性回歸方程是否理想?(3分)

              (參考公式: )

          查看答案和解析>>

          (本小題滿(mǎn)分12分)在第9屆校園文化藝術(shù)節(jié)棋類(lèi)比賽項(xiàng)目報(bào)名過(guò)程中,我校高二(2)班共有16名男生和14名女生預(yù)報(bào)名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會(huì)圍棋.

          (I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:

           

          會(huì)圍棋

          不會(huì)圍棋

          總計(jì)

           

           

           

           

           

           

          總計(jì)

           

           

          30

          并回答能否在犯錯(cuò)的概率不超過(guò)0.10的前提下認(rèn)為性別與會(huì)圍棋有關(guān)?

          參考公式:其中n=a+b+c+d

          參考數(shù)據(jù):

          0.40

          0.25

          0.10

          0.010

          0.708

          1.323

          2.706

          6.635

          (Ⅱ)若從會(huì)圍棋的選手中隨機(jī)抽取3人成立該班圍棋代表隊(duì),則該代表隊(duì)中既有男又

          有女的概率是多少?

          (Ⅲ)若從14名女棋手中隨機(jī)抽取2人參加棋類(lèi)比賽,記會(huì)圍棋的人數(shù)為,求的期望.

           

          查看答案和解析>>

          一、1 B     2 D    3 A   4 D     5 C     6 B   

          7 A     8  A   9 C   10 D    11 C    12 B

          二、13、3     14、      15、-160       16、   

          三、17、解: (1)      ……… 3分

               的最小正周期為                     ………………… 5分

          (2)  ,    …………………   7分     

                         ………………… 10分  

                         …………………  11分

           當(dāng)時(shí),函數(shù)的最大值為1,最小值  ……… 12分

          18.解:(1)P1=;                          ……… 6分

          (2)方法一:P2=

          方法二:P2=

          方法三:P2=1-            ……… 12分

          19、解法一:

          (Ⅰ)連結(jié)CBCO,則OB C的中點(diǎn),連結(jié)DO。

          ∵在△AC中,O、D均為中點(diǎn),

          ADO…………………………2分

          A平面BD,DO平面BD,

          A∥平面BD!4分

          (Ⅱ)設(shè)正三棱柱底面邊長(zhǎng)為2,則DC = 1。

              ∵∠DC = 60°,∴C= 。

          DEBCE。

          ∵平面BC⊥平面ABC

          DE⊥平面BC

          EFBF,連結(jié)DF,則 DF⊥B

          ∴∠DFE是二面角D-B-C的平面角………………8分

          RtDEC中,DE=

          RtBFE中,EF = BE?sin

          ∴在RtDEF中,tan∠DFE =

          ∴二面角DBC的大小為arctan………………12分

          解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

          設(shè)| AD | = 1∵∠DC =60°∴| C| =

               則A(1,0,0),B(0,,0),C(-1,0,0),

          (1,0),

          (Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則     

               O.       =

          A平面BD,

          A∥平面BD.………………………………………………4分

          (Ⅱ)=(-1,0,),

                 設(shè)平面BD的法向量為n = ( x , y , z ),則

                 即  則有= 0令z = 1

          n = (,0,1)          …………………………………8分

                 設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

           

            1.       令y = -1,解得m = (,-1,0)

                    二面角DBC的余弦值為cos<n , m>=

              ∴二面角DBC的大小為arc cos               …………12分

              20、解: 解:

                   (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

                       由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

                       a=-,b=-2,…………  3分

              f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

              (-∞,-

              (-,1)

              1

              (1,+∞)

              f′(x)

              +

              0

              0

              +

              f(x)

               

              極大值

              極小值

              所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

              遞減區(qū)間為(-,1).             …………  6分

              (2)f(x)=x3-x2-2x+c  x∈[-1,2],當(dāng)x=-時(shí),f(x)=+c為極大值,

              而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

              要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

              解得c<-1或c>2.               …………  12分

              21、(I)解:方程的兩個(gè)根為,

              當(dāng)時(shí),,所以;

              當(dāng)時(shí),,,所以;

              當(dāng)時(shí),,,所以時(shí);

              當(dāng)時(shí),,,所以.      …………  4分

              (II)解:

              .                          …………  8分

              (Ⅲ)=                       …………  12分

              22、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線(xiàn)為其相應(yīng)準(zhǔn)線(xiàn),

              離心率為的橢圓

              設(shè)橢圓的長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c,

              ,,∴點(diǎn)在x軸上,且,且3

              解之得:,     ∴坐標(biāo)原點(diǎn)為橢圓的對(duì)稱(chēng)中心 

              ∴動(dòng)點(diǎn)M的軌跡方程為:        …………  4分

              (II)設(shè),設(shè)直線(xiàn)的方程為,代入

                                 ………… 5分

              , 

                  ………… 6分

              ,,

              ,

               

              解得: (舍)   ∴ 直線(xiàn)EF在X軸上的截距為    …………8分

              (Ⅲ)設(shè),由知, 

              直線(xiàn)的斜率為    ………… 10分

              當(dāng)時(shí),;

              當(dāng)時(shí),,

              時(shí)取“=”)或時(shí)取“=”),

                           ………… 12分            

              綜上所述                  ………… 14分