日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 聯(lián)立解得: 查看更多

           

          題目列表(包括答案和解析)

            21世紀國際聯(lián)合開發(fā)月球一項大型的國際航天合作計劃重返月球將成為新的航空熱點.人類在月球上生存首先要解決呼吸與飲用水的問題.淡水和氧氣是人類生存必不可少的物質.月球上既沒有水又沒有空氣,但月球的沙土里含有很多的氧,于是科學家提出了用月球的沙土制造水和氧氣的設想.其次是月球基地建設必須保證食物供應.近幾年,科學家在空間站進行了大量的生物學試驗,先后培育了一百多種“太空植物”,實驗證明在失重條件下,植物種子的發(fā)芽率更高,生長更快,開花或抽穗時間更早.科學家也對一些動物進行試驗,證明在失重條件下不會影響新生命的誕生,最后是建立月球基地需要的能源問題.月球上沒有風沒有雨,晴朗無陰,終日有陽光照射,而且由于沒有大氣吸收,太陽的輻射強度大約是地球上的一倍半,因此月球上完全可以用太陽能來照明、供熱、供暖、發(fā)電,當然必要時還可以在月球上建立核電站.

          閱讀上文回答下列問題:

          (1)月球上科學家估計160t沙土含有15t至16t氧化鐵:21%礦物,用從地球上帶去的氫氣還原氧化鐵得到水,水電解制得氧氣,一個人每年需0.1t氧氣,問160t沙土最多可制得的氧氣供多少人使用一年?

          (2)未來人在月球基地上培育植物,植物生存的非生物因素是什么?設想一下植物所需水從何得來?寫出光合作用的方程式,其中CO2從何處得來?光合作用的氧氣可供植物干什么?

          (3)月球的重力加速度是地球的1/6,已知月球半徑為1740km,地球的重力加速度為9.8m/s2,求地球人乘飛船到月球時速度多大?

          (4)有一太陽能熱水器,接受來自太陽的輻射能,使水升高溫度,設陽光垂直照射到月球上傳播方向上的光流強度為3.8×103W/m2,熱水器受陽光垂直照射的面積為1m2,認為陽光一直垂直照射熱水器,且輻射太陽能的70%轉化為水的內(nèi)能,照射半小時,可使100kg水升高多少度?(已知c(H2O)=4.2×103kJ/kg℃)

          查看答案和解析>>

          (08年湖北兩校聯(lián)考)(17分)如圖所示,將質量均為m厚度不計的兩物塊A、B用輕質彈簧相連接。第一次只用手托著B物塊于H高度,A在彈簧彈力的作用下處于靜止,現(xiàn)將彈簧鎖定,此時彈簧的彈性勢能為Ep,現(xiàn)由靜止釋放A、B,B物塊剛要著地前瞬間將彈簧瞬間解除鎖定(解除鎖定無機構能損失),B物塊著地后速度立即變?yōu)镺,在隨后的過程中B物塊恰能離開地面但不繼續(xù)上升。第二次用手拿著A、B兩物塊,使得彈簧豎直并處于原長狀態(tài),此時物塊B離地面的距離也為H,然后由靜止同時釋放A、B,B物塊著地后速度同樣立即變?yōu)?。求:

             (1)第二次釋放A、B后,A上升至彈簧恢復原長時的速度v1;

             (2)第二次釋放A、B后,B剛要離地時A的速度v2

          查看答案和解析>>

          第三部分 運動學

          第一講 基本知識介紹

          一. 基本概念

          1.  質點

          2.  參照物

          3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

          4.絕對運動,相對運動,牽連運動:v=v+v 

          二.運動的描述

          1.位置:r=r(t) 

          2.位移:Δr=r(t+Δt)-r(t)

          3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數(shù)

          5.以上是運動學中的基本物理量,也就是位移、位移的一階導數(shù)、位移的二階導數(shù)?墒

          三階導數(shù)為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導數(shù)叫“急動度”。)

          6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

          三.等加速運動

          v(t)=v0+at           r(t)=r0+v0t+1/2 at

           一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學家曾經(jīng)研究,當大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

          練習題:

          一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

          四.剛體的平動和定軸轉動

          1. 我們講過的圓周運動是平動而不是轉動 

            2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

           3.  有限的角位移是標量,而極小的角位移是矢量

          4.  同一剛體上兩點的相對速度和相對加速度 

          兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

          投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

          例:A,B,C三質點速度分別V,VB  ,VC      

          求G的速度。

          五.課后習題:

          一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

          五、處理問題的一般方法

          (1)用微元法求解相關速度問題

          例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

          (vA

          (2)拋體運動問題的一般處理方法

          1. 平拋運動
          2. 斜拋運動
          3. 常見的處理方法

          (1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

          (2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

          (3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

          例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

          (α=、 x=

          第二講 運動的合成與分解、相對運動

          (一)知識點點撥

          1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
          2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
          3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
          4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
            1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

          參考系的轉換:動參考系,靜參考系

          相對運動:動點相對于動參考系的運動

          絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

          牽連運動:動參考系相對于靜參考系的運動

          (5)位移合成定理:SA對地=SAB+SB對地

          速度合成定理:V絕對=V相對+V牽連

          加速度合成定理:a絕對=a相對+a牽連

          (二)典型例題

          (1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

          提示:矢量關系入圖

          答案:83.7m/s

          (2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計算自動扶梯的臺階數(shù)?

          提示:V人對梯=n1/t1

                V梯對地=n/t2

                V人對地=n/t3

          V人對地= V人對梯+ V梯對地

          答案:n=t2t3n1/(t2-t3)t1

          (3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達正對岸的B處,求河的寬度。

          提示:120=V水*600

                  D=V船*600

           答案:200m

          (4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

          提示:如圖船航行

          答案:1.58m/s

          (三)同步練習

          1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

          2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

          3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

          4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

          (四)同步練習提示與答案

          1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

          2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

          第二段和第三段大小相同。

          參見右圖,顯然:

          v2 =  + u2 - 2vucos120°

          可解出 v = 24km/h 。

          答案:0.2hour(或12min.)。

          3、提示:方法與練習一類似。答案為:3

          4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

          (2)解法有講究:以A端為參照, 則桿上各點只繞A轉動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v = vA,可知B端相對A的轉動線速度為:v + vAsinθ=  。

          P點的線速度必為  = v 

          所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

          答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

          查看答案和解析>>

          (1)標出各個狀態(tài)的參量,如圖所示

          精英家教網(wǎng)

          對A狀態(tài)到B狀態(tài)過程運用查理定律列方程,有:
          PA
          TA
          =
          PB
          TB

          對C狀態(tài)到D狀態(tài)過程運用查理定律列方程,有:
          PC
          TC
          =
          PD
          TD

          聯(lián)立解得:
          TD=
          TBTC
          TA
                            
          (2)H點的狀態(tài)參量為:PH=
          P1+P2
          2
          VH=
          V1+V2
          2

          其中:P2=
          TB
          TA
          P1
          ,V2=
          TC
          TA
          V1

          PH=
          P1(TA+TB)
          2TA
          ,VH=
          V1(TA+TC)
          2TA

          根據(jù)理想氣體狀態(tài)方程,有:
          PHVH
          TH
          =
          P1V1
          TA

          將pH、VH代入整理可得:
          TH=
          (TA+TB)(TA+TC)
          4TA

          答:(1)D點的溫度為
          TBTC
          TA

          (2)矩形對角線交點H處的溫度為
          (TA+TB)(TA+TC)
          4TA

          查看答案和解析>>

          解析 (1)小球從曲面上滑下,只有重力做功,由機械能守恒定律知:

          mghmv                                                       ①

          v0 m/s=2 m/s.

          (2)小球離開平臺后做平拋運動,小球正好落在木板的末端,則

          Hgt2                                                                                                                                                     

          v1t                                                                                                               

          聯(lián)立②③兩式得:v1=4 m/s

          設釋放小球的高度為h1,則由mgh1mv

          h1=0.8 m.

          (3)由機械能守恒定律可得:mghmv2

          小球由離開平臺后做平拋運動,可看做水平方向的勻速直線運動和豎直方向的自由落體運動,則:

          ygt2                                                                                                                                                      

          xvt                                                                                                                      

          tan 37°=                                                                                                         

          vygt                                                                                                                     

          vv2v                                                       ⑧

          Ekmv                                                      ⑨

          由④⑤⑥⑦⑧⑨式得:Ek=32.5h                                                                      

          考慮到當h>0.8 m時小球不會落到斜面上,其圖象如圖所示

          答案 (1)2 m/s (2)0.8 m (3)Ek=32.5h 圖象見解析

          查看答案和解析>>

          一、選擇題

          1、B    2、C  3、AC    4、D    5、BC  6BC  

          7、A  解析:由題意知,地面對物塊A的摩擦力為0,對物塊B的摩擦力為

          對A、B整體,設共同運動的加速度為a,由牛頓第二定律有:

          對B物體,設A對B的作用力為,同理有

          聯(lián)立以上三式得:

           8、B    9、A       10、B

          二、實驗題

          11、⑴ 不變    ⑵ AD  ⑶ABC  ⑷某學生的質量

          三、計算題

          12、解析:由牛頓第二定律得:mg-f=ma

                                   

              拋物后減速下降有:

                                    Δv=a/Δt

                              解得:

           

          13、解析:人相對木板奔跑時,設人的質量為,加速度為,木板的質量為M,加速度大小為,人與木板間的摩擦力為,根據(jù)牛頓第二定律,對人有:;

          (2)設人從木板左端開始距到右端的時間為,對木板受力分析可知:,方向向左;

          由幾何關系得:,代入數(shù)據(jù)得:

          (3)當人奔跑至右端時,人的速度,木板的速度;人抱住木柱的過程中,系統(tǒng)所受的合外力遠小于相互作用的內(nèi)力,滿足動量守恒條件,有:

          。ㄆ渲為二者共同速度)

          代入數(shù)據(jù)得,方向與人原來運動方向一致;

          以后二者以為初速度向右作減速滑動,其加速度大小為,故木板滑行的距離為

            

          14. 解析:(1)從圖中可以看出,在t=2s內(nèi)運動員做勻加速直線運動,其加速度大小為

           =8m/s2

          設此過程中運動員受到的阻力大小為f,根據(jù)牛頓第二定律,有mg-f=ma

          得           f=m(g-a)=80×(10-8)N=160N

          (2)從圖中估算得出運動員在14s內(nèi)下落了

                               39.5×2×2m158 m

          根據(jù)動能定理,有

          所以有    =(80×10×158-×80×62)J≈1.25×105J

          (3)14s后運動員做勻速運動的時間為

                        s=57s

          運動員從飛機上跳下到著地需要的總時間

                  t=t+t′=(14+57)s=71s

          15. 13、解析:(1)取豎直向下的方向為正方向。

             球與管第一次碰地前瞬間速度,方向向下。

             碰地的瞬間管的速度,方向向上;球的速度,方向向下,

             球相對于管的速度,方向向下。

             碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

             球受重力及向上的摩擦力,加速度a=3g,方向向上,

          球相對管的加速度a=5g,方向向上。

          取管為參照物,則球與管相對靜止前,球相對管下滑的距離為:

          要滿足球不滑出圓管,則有。

          (2)設管從碰地到它彈到最高點所需時間為t1(設球與管在這段時間內(nèi)摩擦力方向不變),則:

          設管從碰地到與球相對靜止所需時間為t2,

          因為t1 >t2,說明球與管先達到相對靜止,再以共同速度上升至最高點,設球與管達到相對靜止時離地高度為h’,兩者共同速度為v’,分別為:

          然后球與管再以共同速度v’作豎直上拋運動,再上升高度h’’為

          因此,管上升最大高度H’=h’+h’’=

          (3)當球與管第二次共同下落時,離地高為,球位于距管頂處,同題(1)可解得在第二次反彈中發(fā)生的相對位移。

           

          16. 解析:(1)小球最后靜止在水平地面上,在整個運動過程中,空氣阻力做功使其機械能減少,設小球從開始拋出到最后靜止所通過的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

              (2)第一次上升和下降:設上升的加速度為a11.上升所用的時間為t11,上升的最大高度為h1;下降的加速度為a12,下降所用時間為t12

              上升階段:F=mg+f =1.6 mg

              由牛頓第二定律:a11 =1.6g           

              根據(jù):vt=v0-a11t11,  vt=0

              得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

              下降階段:a12=(mg-f)/m= 0.4g          

              由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

              所以上升和下降所用的總時間為:T1=t11+t12=3t11=  15 v0/(8g)        

              第二次上升和下降,以后每次上升的加速度都為a11,下降的加速度都為a12;設上升的初速度為v2,上升的最大高度為h2,上升所用時間為t21,下降所用時間為t22

              由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

              上升階段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

              下降階段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

           所以第二次上升和下降所用總時間為:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

              第三次上升和下降,設上升的初速度為v3,上升的最大高度為h3,上升所用時間為t31,下降所用時間為t32

              由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

              上升階段:v3=a11t3l,得t31= 5 v0/(32g)    

              下降階段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

              所以第三次上升和下降所用的總時間為:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

              同理,第n次上升和下降所用的總時間為: Tn        

              所以,從拋出到落地所用總時間為: T=15 v0/(4g)

           


          同步練習冊答案