日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分14分)

          已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點平行于軸,交直線于點,過點平行于軸,交曲線于點,接著過點平行于軸,交直線于點,過點平行于軸,交曲線于點,如此下去,可以得到點,,…,,… .  設點的坐標為,.

          (Ⅰ)試用表示,并證明;   

          (Ⅱ)試證明,且);

          (Ⅲ)當時,求證:  ().

          查看答案和解析>>

          (本題滿分14分)

           已知函數(shù)圖象上一點處的切線方程為

          (Ⅰ)求的值;

          (Ⅱ)若方程內有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

          (Ⅲ)令,若的圖象與軸交于,(其中),的中點為,求證:處的導數(shù)

          查看答案和解析>>

          (本題滿分14分)

          已知曲線方程為,過原點O作曲線的切線

          (1)求的方程;

          (2)求曲線,軸圍成的圖形面積S;

          (3)試比較的大小,并說明理由。

          查看答案和解析>>

          (本題滿分14分)

          已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)

          (1)求橢圓方程;

          (2)直線過橢圓的右焦點交橢圓于A、B兩點,當△AOB面積最大時,求直線方程。

          查看答案和解析>>

          (本題滿分14分)

          如圖,在直三棱柱中,,,求二面角的大小。    

          查看答案和解析>>

          一、選擇題(每小題5分,共計60分)

          ABADD  CACAC  AB

          二、填空題(每小題4分,共計16分)

          (13)4;(14);(15);(16)①④.

          三、解答題:

          17.解:(本小題滿分12分)

          (Ⅰ) 由題意

             

                    

                    

              由題意,函數(shù)周期為3,又>0,

             (Ⅱ) 由(Ⅰ)知

                

                

          又x,的減區(qū)間是.

          (18) (本小題滿分12分)

          解:(1)隨機變量的所有可能取值為

          所以隨機變量的分布列為

          0

          1

          2

          3

          4

          5

             (2)∵隨機變量

                  ∴

          19. (本小題滿分12分)

          解:(Ⅰ)∵   底面ABCD是正方形,

          ∴AB⊥BC,

          又平面PBC⊥底面ABCD  

          平面PBC ∩  平面ABCD=BC

          ∴AB  ⊥平面PBC

          又PC平面PBC

          ∴AB  ⊥CP  ………………3分

          (Ⅱ)解法一:體積法.由題意,面,

           

          中點,則

          .

          再取中點,則   ………………5分

          設點到平面的距離為,則由

          .                   ………………7分

          解法二:

          中點,再取中點

          ,

          過點,則

          中,

          ∴點到平面的距離為。  ………………7分

          解法三:向量法(略)

          (Ⅲ)

          就是二面角的平面角.

          ∴二面角的大小為45°.   ………………12分

          方法二:向量法(略).

          (20)(本小題滿分12分)

          解:(Ⅰ)方法一:∵,

          .           

          設直線

          并設l與g(x)=x2相切于點M()

            ∴2

          代入直線l方程解得p=1或p=3.

                                       

          方法二:  

          將直線方程l代入

          解得p=1或p=3 .                                      

          (Ⅱ)∵,                                

          ①要使為單調增函數(shù),須恒成立,

          恒成立,即恒成立,

          ,所以當時,為單調增函數(shù);   …………6分

          ②要使為單調減函數(shù),須恒成立,

          恒成立,即恒成立,

          ,所以當時,為單調減函數(shù).                

          綜上,若為單調函數(shù),則的取值范圍為.………8分

           

          (21) (本小題滿分12分)

          (1)∵直線的方向向量為

          ∴直線的斜率為,又∵直線過點

          ∴直線的方程為

          ,∴橢圓的焦點為直線軸的交點

          ∴橢圓的焦點為

          ,又∵

          ,∴

          ∴橢圓方程為  

          (2)設直線MN的方程為

          ,

          坐標分別為

             (1)    (2)        

          >0

          ,

          ,顯然,且

          代入(1) (2),得

          ,得

          ,即

          解得.

           (22) (本小題滿分14分)

          (1)  解:過的直線方程為

          聯(lián)立方程消去

          (2)

          是等比數(shù)列

            ,;

          (III)由(II)知,,要使恒成立由=>0恒成立,

          即(-1)nλ>-(n1恒成立.

          ?。當n為奇數(shù)時,即λ<(n1恒成立.

          又(n1的最小值為1.∴λ<1.                                                              10分

          ?。當n為偶數(shù)時,即λ>-(n-1恒成立,

          又-(n1的最大值為-,∴λ>-.                                                 11分

          即-<λ<1,又λ≠0,λ為整數(shù),

          λ=-1,使得對任意n∈N*,都有                                                                                    


          同步練習冊答案