日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線(xiàn)x+2y-3=0與圓x2+y2+x-6y+m=0相交于P.Q兩點(diǎn).O為坐標(biāo)原點(diǎn).若OP⊥OQ.則m等于A.3 B.-3 C.1 D.-1 查看更多

           

          題目列表(包括答案和解析)

          已知直線(xiàn)x+2y-3=0與圓x2+y2+x-6y+m=0相交于P,Q兩點(diǎn),且OP⊥OQ(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的值.

          查看答案和解析>>

          已知圓x2y2x-6ym=0與直線(xiàn)x+2y-3=0相交于PQ兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

          查看答案和解析>>

          (12分)已知圓x2+y2+x-6y+3=0與直線(xiàn)x+2y-3=0的兩個(gè)交點(diǎn)為P、Q,求以PQ為直徑的圓的方程.

           

          查看答案和解析>>

          已知圓Cx2y2x-6ym=0與直線(xiàn)lx+2y-3=0.
          (1)若直線(xiàn)l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;
          (2)若直線(xiàn)l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

          查看答案和解析>>

          已知圓Cx2y2x6ym0與直線(xiàn)lx2y30.

          (1)若直線(xiàn)l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;

          (2)若直線(xiàn)l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

           

          查看答案和解析>>

          難點(diǎn)磁場(chǎng)

          1.解析:設(shè)F1(-c,0)、F2(c,0)、P(x,y),則

          |PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),

          即|PF1|2+|PF2|2<50+2c2,

          又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|?|PF2|,

          依雙曲線(xiàn)定義,有|PF1|-|PF2|=4,

          依已知條件有|PF1|?|PF2|=|F1F2|2=4c2

          ∴16+8c2<50+2c2,∴c26ec8aac122bd4f6e,

          又∵c2=4+b26ec8aac122bd4f6e,∴b26ec8aac122bd4f6e,∴b2=1.

          答案:1

          2.解法一:設(shè)所求圓的圓心為P(a,b),半徑為r,則點(diǎn)Px軸、y軸的距離分別為|b|、|a|

          ∵圓Py軸所得弦長(zhǎng)為2,∴r2=a2+1

          又由題設(shè)知圓Px軸所得劣弧對(duì)的圓心角為90°,故弦長(zhǎng)|AB|=6ec8aac122bd4f6er,故r2=2b2,從而有2b2a2=1

          又∵點(diǎn)P(a,b)到直線(xiàn)x-2y=0的距離d=6ec8aac122bd4f6e,

          因此,5d2=|a-2b|2=a2+4b2-4aba2+4b2-2(a2+b2)=2b2a2=1,

          當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立,此時(shí)5d2=1,從而d取最小值,為此有6ec8aac122bd4f6e,

          r2=2b2, ∴r2=2

          于是所求圓的方程為:(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2

          解法二:設(shè)所求圓P的方程為(xa)2+(yb)2=r2(r>0)

          設(shè)A(0,y1),B(0,y2)是圓與y軸的兩個(gè)交點(diǎn),則y1y2是方程a2+(yb)2=r2的兩根,

          y12=b±6ec8aac122bd4f6e

          由條件①得|AB|=2,而|AB|=|y1y2|,得r2a2=1

          設(shè)點(diǎn)C(x1,0)、D(x2,0)為圓與x軸的兩個(gè)交點(diǎn),則x1,x2是方程(xa)2+b2=r2的兩個(gè)根,

          x1,2=a±6ec8aac122bd4f6e

          由條件②得|CD|=6ec8aac122bd4f6er,又由|CD|=|x2x1|,得2b2=r2,故2b2=a2+1

          設(shè)圓心P(a,b)到直線(xiàn)x-2y=0的距離為d=6ec8aac122bd4f6e

          a-2b6ec8aac122bd4f6ed,得a2=(2b±6ec8aac122bd4f6ed)2=4b2±46ec8aac122bd4f6ebd+5d2

          又∵a2=2b2-1,故有2b2±46ec8aac122bd4f6ebd+5d2+1=0.把上式看作b的二次方程,

          ∵方程有實(shí)根.

          Δ=8(5d2-1)≥0,得5d2≥1.

          dmin=6ec8aac122bd4f6e,將其代入2b2±46ec8aac122bd4f6ebd+5d2+1=0,

          得2b2±4b+2=0,解得b=±1.

          從而r2=2b2=2,a6ec8aac122bd4f6e=±1

          于是所求圓的方程為(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:將直線(xiàn)方程變?yōu)?i>x=3-2y,代入圓的方程x2+y2+x-6y+m=0,

          得(3-2y)2+y2+(3-2y)+m=0.

          整理得5y2-20y+12+m=0,設(shè)P(x1,y1)、Q(x2,y2)

          y1y2=6ec8aac122bd4f6e,y1+y2=4.

          又∵P、Q在直線(xiàn)x=3-2y上,

          x1x2=(3-2y1)(3-2y2)=4y1y2-6(y1+y2)+9

          y1y2+x1x2=5y1y2-6(y1+y2)+9=m-3=0,故m=3.

          答案:A

          2.解析:由題意,可設(shè)橢圓方程為:6ec8aac122bd4f6e =1,且a2=50+b2,

          即方程為6ec8aac122bd4f6e=1.

          將直線(xiàn)3xy-2=0代入,整理成關(guān)于x的二次方程.

          x1+x2=1可求得b2=25,a2=75.

          答案:C

          二、3.解析:所求橢圓的焦點(diǎn)為F1(-1,0),F2(1,0),2a=|PF1|+|PF2|.

          欲使2a最小,只需在直線(xiàn)l上找一點(diǎn)P.使|PF1|+|PF2|最小,利用對(duì)稱(chēng)性可解.?

          答案:6ec8aac122bd4f6e =1

          4.解析:設(shè)所求圓的方程為(xa)2+(yb)2=r2

          則有6ec8aac122bd4f6e  6ec8aac122bd4f6e

          由此可寫(xiě)所求圓的方程.

          答案:x2+y2-2x-12=0或x2+y2-10x-8y+4=0

          三、5.解:|MF|max=a+c,|MF|min=ac,則(a+c)(ac)=a2c2=b2,

          b2=4,設(shè)橢圓方程為6ec8aac122bd4f6e                                                                    ①

          設(shè)過(guò)M1M2的直線(xiàn)方程為y=-x+m                                                              

          將②代入①得:(4+a2)x2-2a2mx+a2m2-4a2=0                                                  ③

          設(shè)M1(x1,y1)、M2(x2,y2),M1M2的中點(diǎn)為(x0,y0),

          x0=6ec8aac122bd4f6e (x1+x2)=6ec8aac122bd4f6e,y0=-x0+m=6ec8aac122bd4f6e.

          代入y=x,得6ec8aac122bd4f6e,

          由于a2>4,∴m=0,∴由③知x1+x2=0,x1x2=-6ec8aac122bd4f6e,

          又|M1M2|=6ec8aac122bd4f6e,

          代入x1+x2,x1x2可解a2=5,故所求橢圓方程為:6ec8aac122bd4f6e =1.

          6.解:以拱頂為原點(diǎn),水平線(xiàn)為x軸,建立坐標(biāo)系,

          如圖,由題意知,|AB|=20,|OM|=4,A、B坐標(biāo)分別為(-10,-4)、(10,-4)

          設(shè)拋物線(xiàn)方程為x2=-2py,將A點(diǎn)坐標(biāo)代入,得100=-2p×(-4),解得p=12.5,

          于是拋物線(xiàn)方程為x2=-25y.

          6ec8aac122bd4f6e

          由題意知E點(diǎn)坐標(biāo)為(2,-4),E′點(diǎn)橫坐標(biāo)也為2,將2代入得y=-0.16,從而|EE′|=

          (-0.16)-(-4)=3.84.故最長(zhǎng)支柱長(zhǎng)應(yīng)為3.84米.

          7.解:由e=6ec8aac122bd4f6e,可設(shè)橢圓方程為6ec8aac122bd4f6e=1,

          又設(shè)A(x1,y1)、B(x2,y2),則x1+x2=4,y1+y2=2,

          6ec8aac122bd4f6e=1,兩式相減,得6ec8aac122bd4f6e=0,

          即(x1+x2)(x1x2)+2(y1+y2)(y1y2)=0.

          化簡(jiǎn)得6ec8aac122bd4f6e=-1,故直線(xiàn)AB的方程為y=-x+3,

          代入橢圓方程得3x2-12x+18-2b2=0.

          Δ=24b2-72>0,又|AB|=6ec8aac122bd4f6e,

          6ec8aac122bd4f6e,解得b2=8.

          故所求橢圓方程為6ec8aac122bd4f6e=1.

           

           


          同步練習(xí)冊(cè)答案