日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.[解](1)由.可得. -- 3分 查看更多

           

          題目列表(包括答案和解析)

          在數(shù)列中,,其中,對任意都有:;(1)求數(shù)列的第2項和第3項;

          (2)求數(shù)列的通項公式,假設,試求數(shù)列的前項和;

          (3)若對一切恒成立,求的取值范圍。

          【解析】第一問中利用)同理得到

          第二問中,由題意得到:

          累加法得到

          第三問中,利用恒成立,轉化為最小值大于等于即可。得到范圍。

          (1)同理得到             ……2分 

          (2)由題意得到:

           又

                        ……5分

           ……8分

          (3)

           

          查看答案和解析>>

          已知四棱錐的底面為直角梯形,,底面,且,的中點。

          (1)證明:面

          (2)求所成的角;

          (3)求面與面所成二面角的余弦值.

          【解析】(1)利用面面垂直的性質,證明CD⊥平面PAD.

          (2)建立空間直角坐標系,寫出向量的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.

          (3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

           

          查看答案和解析>>

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結合韋達定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數(shù)列{cn}滿足,求{cn}的前n項和Tn.

          【解析】本試題主要是考查了等比數(shù)列的通項公式和求和的運用。第一問中,利用等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項求和得到Tn.

          解: (Ⅰ) 設:{an}的公差為d,

          因為解得q=3或q=-4(舍),d=3.

          故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

          (Ⅱ)因為……………8分

           

          查看答案和解析>>

          已知函數(shù)取得極值

          (1)求的單調區(qū)間(用表示);

          (2)設,若存在,使得成立,求的取值范圍.

          【解析】第一問利用

          根據(jù)題意取得極值,

          對參數(shù)a分情況討論,可知

          時遞增區(qū)間:    遞減區(qū)間: ,

          時遞增區(qū)間:    遞減區(qū)間: ,

          第二問中, 由(1)知: ,

          ,

           

          從而求解。

          解:

          …..3分

          取得極值, ……………………..4分

          (1) 當時  遞增區(qū)間:    遞減區(qū)間: ,

          時遞增區(qū)間:    遞減區(qū)間: , ………….6分

           (2)  由(1)知: ,

          ,

           

          ……………….10分

          , 使成立

              得:

           

          查看答案和解析>>


          同步練習冊答案