日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解得?????????????????????????? 查看更多

           

          題目列表(包括答案和解析)

          如圖,點A是△ABC和△ADE的公共頂點,∠BAC+∠DAE=180°,ABk?AE,ACk?AD,點MDE的中點,直線AM交直線BC于點N

          ⑴探究∠ANB與∠BAE的關(guān)系,并加以證明.

          說明:如果你經(jīng)過反復(fù)探索沒解決問題,可以從下面①②中選取一個作為已知條件,再完成你的證明,選、俦冗x原題少得2分,選、诒冗x原題少得5分.

          ①     如圖18,k=1;②如圖19,ABAC

          ⑵若△ADE繞點A旋轉(zhuǎn),其他條件不變,則在旋轉(zhuǎn)的過程中⑴的結(jié)論是否發(fā)生變化?如果沒有發(fā)生變化,請寫出一個可以推廣的命題;如果有變化,請畫出變化后的一個圖形,并直接寫出變化后∠ANB與∠BAE的關(guān)系.

           


          查看答案和解析>>

          請看下面的問題:把分解因式分析:這個二項式既無公因式可提,也不能直接利用公式,怎么辦呢?19世紀的法國數(shù)學(xué)家蘇菲?熱門抓住了該式只有兩項,而且屬于平方和的形式,要使用公式就必須添一項,隨即將此項減去,即可得人們?yōu)榱思o念蘇菲?熱門給       出這一解法,就把它叫做“熱門定理”,請你依照蘇菲?熱門的做法,將下列各式因式分解.

          (1)                        (2)

          查看答案和解析>>

          已知四邊形ABCD中,P是對角線BD上的一點,過P作MN∥AD,EF∥CD,分別交AB、CD、AD、BC于點M、N、E、F,設(shè)=PM?PE,=PN?PF,解答下列問題:

          (1)當(dāng)四邊形ABCD是矩形時,見圖1,請判斷的大小關(guān)系,并說明理由;

          (2)當(dāng)四邊形ABCD是平行四邊形,且∠A為銳角時,見圖2,(1)中的結(jié)論是否成立?并說明理由;

          (3)在(2)的條件下,設(shè),是否存在這樣的實數(shù),使得?若存在,請求出滿足條件的所有的值;若不存在,請說明理由。

          查看答案和解析>>

          閱讀材料:如圖(1),在四邊形ABCD中,對角線ACBD,垂足為P,

          求證:S四邊形ABCD=AC?BD

          證明:∵AC⊥BD,∴

          ∴S四邊形ABCD=SACD+ SABC=AC?PD+AC?PB=ACPD+PB)=AC?BD。

          解答問題:

          (1)上述證明得到的性質(zhì)可敘述為:           

          (2)已知:如圖(2),等腰梯形ABCD中,ADBC,對角線ACBD且相交于點PAD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積。

          查看答案和解析>>

          如下圖(1),由直角三角形邊角關(guān)系,可將三角形面積公式變形,

          得  =bc?sin∠A.     ①

          即三角形的面積等于兩邊之長與夾角正弦之積的一半.

          如下圖(2),在ABC中,CD⊥AB于D,∠ACD=α, ∠DCB=β.

          , 由公式①,得

          AC?BC?sin(α+β)= AC?CD?sinα+BC?CD?sinβ,

          即 AC?BC?sin(α+β)= AC?CD?sinα+BC?CD?sinβ.   ②

          你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

          查看答案和解析>>


          同步練習(xí)冊答案