日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)k=11時=36―4k=36―44<0 .∴k=11不合題意 查看更多

           

          題目列表(包括答案和解析)

          問題背景:
          若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
          1
          2
          x
          (x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
          提出新問題:
          若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
          分析問題:
          若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
          1
          x
          )
          (x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(小)值了.
          解決問題:
          借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲担
          (1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
          1
          x
          )
          (x>0)的圖象:
          x 1/4 1/3 1/2 1 2 3 4
          y
          17
          2
          20
          3
          5 4 5
          20
          3
          17
          2
          (2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
          1
          1
          時,函數(shù)y=2(x+
          1
          x
          )
          (x>0)有最
          值(填“大”或“小”),是
          4
          4

          (3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
          1
          2
          x
          (x>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲担宰C明你的猜想.〔提示:當(dāng)x>0時,x=(
          x
          )2

          查看答案和解析>>

          當(dāng)a=
          1
          1
          時,二次三項式-a2+2a+3有最大值,此時最大值是
          4
          4

          查看答案和解析>>

          (2012•達州)【問題背景】
          若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
          1
          2
          x(x
          >0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
          【提出新問題】
          若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
          【分析問題】
          若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
          1
          x
          )
          (x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
          【解決問題】
          借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲担
          (1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
          1
          x
          )
          (x>0)的圖象:
           x  
          1
          4
           
          1
          3
           
          1
          2
           1  2  3  4
           y              
          (2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
          1
          1
          時,函數(shù)y=2(x+
          1
          x
          )
          (x>0)有最
          值(填“大”或“小”),是
          4
          4

          (3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
          1
          2
          x(x
          >0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時,x=(
          x
          )2

          查看答案和解析>>

          當(dāng)x
          為任意實數(shù)
          為任意實數(shù)
          時,分式
          1-x2x2+1
          有意義;當(dāng)x=
          1
          1
          時,這個分式的值為零.

          查看答案和解析>>

          (m-1)x2+(m+1)x+3m+2=0,當(dāng)m=
          1
          1
          時,方程為關(guān)于x的一元一次方程;當(dāng)m
          ≠1
          ≠1
          時,方程為關(guān)于x的一元二次方程.

          查看答案和解析>>


          同步練習(xí)冊答案