日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解] (Ⅰ)解:因?yàn)?,且, 查看更多

           

          題目列表(包括答案和解析)

          已知向量夾角為 ,且;則

          【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242343432627474_ST.files/image005.png">,所以,即,所以,整理得,解得(舍去).

           

          查看答案和解析>>

          已知的三個(gè)內(nèi)角所對(duì)的邊分別為,且滿足.

          (1)求角的大小;

          (2)若,的面積為,求的值.

          【解析】本試題主要是考查了解三角形中正弦定理和正弦面積公式的求解運(yùn)用。

          (1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810154393286434/SYS201209081016322334125622_ST.files/image009.png">,利用正弦定理得到C的值。

          (2)根據(jù),然后結(jié)合余弦定理得到C的值。

           

          查看答案和解析>>

          已知,且

          (1)求的值;

          (2)求的值.

          【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,可得,第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以,所以,利用組合數(shù)性質(zhì)可知。

          解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,  ……3分

          化簡(jiǎn)可得,且,解得.    …………6分

          (2),所以,

          所以,

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè),,

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

          【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

           故

          ,又由題設(shè)    從而

          第二問(wèn)中,

          當(dāng)時(shí),時(shí)

          時(shí), 

          時(shí),

          分別討論得到結(jié)論。

          由題設(shè)可知

           故

          ,又由題設(shè)   

          從而……………………4分

          (2)

          當(dāng)時(shí),,時(shí)……………………6分

          時(shí),……8分

          時(shí),

           ……………………10分

          綜上可得 

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案