日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)過橢圓C內(nèi)一點作直線l交橢圓C于M.N兩點.求線段MN的中點P的軌跡方程, 查看更多

           

          題目列表(包括答案和解析)

           橢圓C的中心為原點, 右焦點F(,0), 以短軸的兩端點及F為頂點的三角形恰為等邊三角形. 

          (1)求橢圓C的標準方程;

          (2)過橢圓C內(nèi)的一點P(0,)作直線l交橢圓C于M、 N,求MN中點Q的軌跡方程;

          (3)在(2)條件下,求△OMN的面積最大值. 

           

           

           

           

           

           

           

           

          查看答案和解析>>

          橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線MN兩點,且

          (1)求橢圓E的方程;

          (2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQx軸相交于點C,點DCQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論

           

          查看答案和解析>>

          橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且
          (1)求橢圓E的方程;
          (2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

          查看答案和解析>>

          橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且
          (1)求橢圓E的方程;
          (2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

          查看答案和解析>>

          若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
          (1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
          (2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
          (3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設(shè)
          MA
          =λ1
          AN
          ,
          MB
          =λ2
          BN
          ,問λ12是否為定值?說明理由.

          查看答案和解析>>

           

          一、

          DACCA  BDB

          二、

          9.16    10.2009      11.      12.     

          13.    14.3        15.②③

          三、

          16.解:(1)由余弦定理得:

          是以角C為直角的直角三角形.……………………6分

          (2)

          ………………①

          ………………②

          ②÷①得

          ……………………12分

          17.解:(1)因為……………………………………(2分)

                 ……………………………………………………(4分)

                

          所以線路信息通暢的概率為!6分)

             (2)的所有可能取值為4,5,6,7,8。

                

                 ……………………………………………………………(9分)

                 ∴的分布列為

          4

          5

          6

          7

          8

          P

                 …………………………………………………………………………………………(10分)

          ∴E=4×+5×+6×+7×+8×=6!12分)

          18.解:解法一:(1)證明:連結(jié)OC,

          ABD為等邊三角形,O為BD的中點,∴AO

          垂直BD!1分)

                 ∴ AO=CO=!2分)

                 在AOC中,AC=,∴AO2+CO2=AC2,

          ∴∠AOC=900,即AO⊥OC。

                 ∴BDOC=O,∴AO⊥平面BCD。…………………………………………………(3分)

             (2)過O作OE垂直BC于E,連結(jié)AE,

              ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

              ∴AE⊥BC。

              ∠AEO為二面角A―BC―D的平面角!7分)

                 在RtAEO中,AO=,OE=,

          ,

                 ∴∠AEO=arctan2。

                 二面角A―BC―D的大小為arctan2。

                 (3)設(shè)點O到面ACD的距離為∵VO-ACD=VA-OCD,

                 在ACD中,AD=CD=2,AC=

          。

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

                 ∴點O到平面ACD的距離為!12分)

          解法二:(1)同解法一。

                 (2)以O(shè)為原點,如圖建立空間直角坐標系,

                 則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

                 ∵AO⊥平面DCD,

                 ∴平面BCD的法向量=(0,0,)!5分)

            1.        ,

                     由。設(shè)夾角為

                     則。

                     ∴二面角A―BC―D的大小為arccos!8分)

                 (3)解:設(shè)平面ACD的法向量為

              !11分)

              設(shè)夾角為,則

              設(shè)O到平面ACD的距離為,

              ,

              ∴O到平面ACD的距離為。……………………………………………………(12分)19.解:(1).

              …共線,該直線過點P1(a,a),

              斜率為……………………3分

              時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是

              于是

              …………………………7分

              (2)結(jié)合圖象,當

              ,……………………10分

              而當

              ,

              故當1<a>2時,存在正整數(shù)n,使得……………………13分

              20.解:(1)

              設(shè)橢圓C的標準方程為,

              為正三角形,

              a=2b,結(jié)合

              ∴所求為……………………2分

              (2)設(shè)P(x,y)M(),N(),

              直線l的方程為得,

              ……………………4分

              ………………6分

              且滿足上述方程,

              ………………7分

              (3)由(2)得, 

              …………………………9分

              ……………………10分

              設(shè)

              面積的最大值為…………………………13分

              21.解:(1)由

              即可求得……………………3分

              (2)當>0,

              不等式…(5分)

               

              由于

              ……………………7分

              ,

              于是由;………………9分

              (3)由(2)知,

              在上式中分別令x=再三式作和即得

              所以有……………………13分