日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)由,得.設(shè)平面的法向量 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系中,圓M∶(x-1)2+(y-1)2=5在點(diǎn)A(3,2)處的切線方程可如下求解:設(shè)P(x,y)為切線上任一點(diǎn),則由向量方法可得切線方程為:2x+y-8=0,類似地,在空間直角坐標(biāo)系中,球M∶(x-1)2+(y-1)2+(z-1)2=6在點(diǎn)A(3,2,2)處的切面方程為_(kāi)_______.

          查看答案和解析>>

          如圖,在三棱錐中,平面平面,,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

          【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面,再由題設(shè)條件知道可以分別以、,, 軸建立直角坐標(biāo)系得,,,,,

          故平面的法向量,故點(diǎn)B到平面的距離

          第二問(wèn)中,由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

          解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面

            再由題設(shè)條件知道可以分別以、,, 軸建立直角坐標(biāo)系,得,,,,

          ,,故平面的法向量

          ,故點(diǎn)B到平面的距離

          (Ⅱ)由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

           

          查看答案和解析>>

          如圖,四棱柱中,平面,底面是邊長(zhǎng)為的正方形,側(cè)棱

           (1)求三棱錐的體積;

          。ǎ玻┣笾本與平面所成角的正弦值;

          。ǎ常┤衾上存在一點(diǎn),使得,當(dāng)二面角的大小為時(shí),求實(shí)數(shù)的值.

          【解析】(1)在中,

          .                 (3’)

          (2)以點(diǎn)D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則

                 (4’)

          ,設(shè)平面的法向量為,

          ,                                             (5’)

          ,

          .  (7’)

          (3)

          設(shè)平面的法向量為,由,      (10’)

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案