日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 組合數(shù)的兩個性質(zhì): (1) = ; (2) += (3). 查看更多

           

          題目列表(包括答案和解析)

           規(guī)定

             (1)的值;

             (2)組合數(shù)的兩個性質(zhì):;是否都能推廣到的情形?若能推廣,則寫出推廣的形式并給予證明,或不能則說明理由;

             (3)已知組合數(shù)是正整數(shù),證明:當是正整數(shù)時,。

           

           

           

           

           

           

           

          查看答案和解析>>

          我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意均滿足,當且僅當x=y時等號成立.
          (1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大小.
          (2)給定兩個函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
          (3)試利用(2)的結(jié)論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

          查看答案和解析>>

          我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意均滿足,當且僅當x=y時等號成立.
          (1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
          (2)給定兩個函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
          (3)試利用(2)的結(jié)論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

          查看答案和解析>>

          我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意均滿足,當且僅當x=y時等號成立.
          (1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
          (2)給定兩個函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
          (3)試利用(2)的結(jié)論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

          查看答案和解析>>

          我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,均滿足,當且僅當x=y(tǒng)時等號成立.

          若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大小.

          給定兩個函數(shù):,

          證明:

          試利用(2)的結(jié)論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

          查看答案和解析>>


          同步練習冊答案