日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)由 有極值. ① 處的切線l的傾斜角為 ② 由①②可解得a =-4,b = 5 設(shè)切線l的方程為y = x + m.由坐標(biāo)原點(0.0)到切線l的距離為.可得m =±1. 又切線不過第四象限.所以m =1.切線方程為y = x + 1. ∴切點坐標(biāo)為(2.3). 故a=-4,b = 5,c =1. 知 .∴函數(shù)在區(qū)間[-1.1]上遞增.在上遞減. 又. ∴在區(qū)間上的最大值為3.最小值為-9. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

          【解析】第一問中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以

          所以

          第二問中,

          因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

           

          查看答案和解析>>

          以下有四種說法:
          (1)若p∨q為真,p∧q為假,則p與q必為一真一假;
          (2)若數(shù)列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*
          (3)若f′(x0)=0,則f(x)在x=x0處取得極值;
          (4)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
          y
          =bx+a
          ,則l一定經(jīng)過點P(
          .
          x
          , 
          .
          y
          )

          以上四種說法,其中正確說法的序號為
           

          查看答案和解析>>

          以下有四種說法:
          (1)若f′(x0)=0,則f(x)在x=x0處取得極值;
          (2)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
          y
          =bx+a
          ,則l一定經(jīng)過點P(
          .
          x
          , 
          .
          y
          )
          ;
          (3)若p∨q為真,p∧q為假,則p與q必為一真一假;
          (4)函數(shù)f(x)=sin(x+
          π
          6
          )cos(x+
          π
          6
          )
          最小正周期為π,其圖象的一條對稱軸為x=
          π
          12

          以上四種說法,其中正確說法的序號為
          (2)(3)(4)
          (2)(3)(4)

          查看答案和解析>>

          下圖展示了一個由區(qū)間(―π,π)到實數(shù)集R的映射過程:區(qū)間(―π,π)中的實數(shù)x對應(yīng)軸上的點M(如圖1):將線段AB圍成一個圓,使兩端點A、B恰好重合(從A到B是逆時針,如圖2):再將這個圓放在平面直角坐標(biāo)系中,使其圓心在x軸上,點A的坐標(biāo)為(1,0)(如圖3),圖3中直線OM的斜率為k,則x的象就是k,記作k=¦(x).有下列判斷(1)¦(x)是奇函數(shù);(2) ¦(x)是存在3個極值點的函數(shù);(3) ¦(x)的值域是[―,];

          (4) ¦(x)是區(qū)間(―π,π)上的增函數(shù)。其中正確的是

          A、(1)(2)      B、(1)(3)      C、(2)(3)      D、(1)(4)

           

          查看答案和解析>>


          同步練習(xí)冊答案