題目列表(包括答案和解析)
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過
作圓柱的截面交下底面于
.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。
【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
第三問中,設(shè)正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF
(2) 四邊形ABCD是正方形
又
BC、AE是平面ABE內(nèi)兩條相交直線
(3)設(shè)正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B
的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問中因?yàn)橹本經(jīng)過點(diǎn)
(
,0),所以
=
,得
.又因?yàn)閙>1,所以
,故直線的方程為
第二問中設(shè),由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點(diǎn).由
可知
從而
,設(shè)M是GH的中點(diǎn),則M(
).
由題意可知,2|MO|<|GH|,得到范圍
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求與
的值;
(Ⅱ)設(shè)是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為
, 直線
與
軸交點(diǎn)為
,連接
交拋物線
于
、
兩點(diǎn),求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
第三問中,設(shè)直線,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
上.…(2分)
(Ⅲ)設(shè)直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
已知點(diǎn)(
),過點(diǎn)
作拋物線
的切線,切點(diǎn)分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點(diǎn)
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線
相切,且過點(diǎn)
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點(diǎn)
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點(diǎn)到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當(dāng)且僅當(dāng),即
,
時(shí)取等號(hào).
故圓面積的最小值
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com