日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)由題意得: 所以橢圓的方程為 (Ⅱ)由題可知當(dāng)直線PA過(guò)圓M的圓心(8.6)時(shí).弦PQ最大因?yàn)橹本PA的斜率一定存在. 設(shè)直線PA的方程為:y-6=k(x-8) 又因?yàn)镻A與圓O相切.所以圓心(0.0)到直線PA的距離為 即 可得 所以直線PA的方程為: (Ⅲ)設(shè) 則 則 查看更多

           

          題目列表(包括答案和解析)

          已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點(diǎn).

          (Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

          【解析】第一問(wèn)中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

          第二問(wèn)中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得

          解得

          第二問(wèn)若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

          所以

          所以

          ,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,

          所以

          所以,解得

          因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          (2009全國(guó)卷Ⅱ文)(本小題滿分12分)

          已知橢圓C:                    的離心率為      ,過(guò)右焦點(diǎn)F的直線l與C相交于A、B

           
                      

          兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為

           

          (Ⅰ)求a,b的值;

          (Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?

          若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由。

          解析:本題考查解析幾何與平面向量知識(shí)綜合運(yùn)用能力,第一問(wèn)直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問(wèn)利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問(wèn)題,注意特殊情況的處理。

          查看答案和解析>>

          (2009全國(guó)卷Ⅱ文)(本小題滿分12分)

          已知橢圓C:                    的離心率為      ,過(guò)右焦點(diǎn)F的直線l與C相交于A、B

           
                      

          兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為

           

          (Ⅰ)求a,b的值;

          (Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?

          若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由。

          解析:本題考查解析幾何與平面向量知識(shí)綜合運(yùn)用能力,第一問(wèn)直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問(wèn)利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問(wèn)題,注意特殊情況的處理。

          查看答案和解析>>

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案