日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .當(dāng)t=0時.點(diǎn)M與點(diǎn)E重合.則M=(0.1), 查看更多

           

          題目列表(包括答案和解析)

          現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

          (Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

          (Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

          (Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

          【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.

          設(shè)“這4個人中恰有i人去參加甲游戲”為事件

          .

          (1)這4個人中恰有2人去參加甲游戲的概率

          (2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

          所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

          (3)的所有可能取值為0,2,4.由于互斥,互斥,故

              

          所以的分布列是

          0

          2

          4

          P

          隨機(jī)變量的數(shù)學(xué)期望.

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時,,則

          依題意得:,即    解得

          第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時,,令

          當(dāng)變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,。∴上的最大值為2.

          ②當(dāng)時, .當(dāng)時, ,最大值為0;

          當(dāng)時, 上單調(diào)遞增。∴最大值為。

          綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

          當(dāng)時,即時,在區(qū)間上的最大值為

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.

          (Ⅰ) 求m,n的值;

          (Ⅱ) 從袋子中任取3個球,設(shè)取到紅球的個數(shù)為,求的分布列與數(shù)學(xué)期望.

          【解析】第一問中利用,解得m=6,n=3.

          第二問中,的取值為0,1,2,3. P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          得到分布列和期望值

          解:(I)據(jù)題意得到        解得m=6,n=3.

          (II)的取值為0,1,2,3.

          P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          的分布列為

          所以E=2

           

          查看答案和解析>>


          同步練習(xí)冊答案