日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②常用的證明組合等式方法例. 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)求證:
          C
          m
          n
          =
          n
          m
          C
          m-1
          n-1
          ;
          (Ⅱ)利用第(Ⅰ)問(wèn)的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來(lái)證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
          (1+x)[1-(1+x)n]
          1-(1+x)
          =
          (1+x)n+1-(1+x)
          x
          ;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          (Ⅰ)求證:
          (Ⅱ)利用第(Ⅰ)問(wèn)的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來(lái)證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來(lái)證明組合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左邊xn的系數(shù)為
          C
          n
          2n
          ,而右邊(1+x)n(1+x)n=(
          C
          0
          n
          +
          C
          1
          n
          x+
          C
          2
          n
          x2+…+
          C
          n
          n
          xn)(
          C
          0
          n
          +
          C
          1
          n
          x+
          C
          2
          n
          x2+…+
          C
          n
          n
          xn)
          ,xn的系數(shù)為
          C
          0
          n
          C
          n
          n
          +
          C
          1
          n
          C
          n-1
          n
          +
          C
          2
          n
          C
          n-2
          n
          +…+
          C
          n
          n
          C
          0
          n
          =(
          C
          0
          n
          )2+(
          C
          1
          n
          )2+(
          C
          2
          n
          )2+…+(
          C
          n
          n
          )2
          ,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
          C
          0
          n
          )2+(
          C
          1
          n
          )2+(
          C
          2
          n
          )2+…+(
          C
          n
          n
          )2=
          C
          n
          2n

          利用上述方法,化簡(jiǎn)(
          C
          0
          2n
          )2-(
          C
          1
          2n
          )2+(
          C
          2
          2n
          )2-(
          C
          3
          2n
          )2+…+(
          C
          2n
          2n
          )2
          =
          (-1)n
          C
          n
          2n
          (-1)n
          C
          n
          2n

          查看答案和解析>>

          我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來(lái)證明組合恒等式,如由等式可得,左邊的系數(shù)為

          而右邊, 的系數(shù)為,

          恒成立,可得

          利用上述方法,化簡(jiǎn)      

           

          查看答案和解析>>

          我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來(lái)證明組合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左邊xn的系數(shù)為
          Cn2n
          ,而右邊(1+x)n(1+x)n=(
          C0n
          +
          C1n
          x+
          C2n
          x2+…+
          Cnn
          xn)(
          C0n
          +
          C1n
          x+
          C2n
          x2+…+
          Cnn
          xn)
          ,xn的系數(shù)為
          C0n
          Cnn
          +
          C1n
          Cn-1n
          +
          C2n
          Cn-2n
          +…+
          Cnn
          C0n
          =(
          C0n
          )2+(
          C1n
          )2+(
          C2n
          )2+…+(
          Cnn
          )2
          ,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
          C0n
          )2+(
          C1n
          )2+(
          C2n
          )2+…+(
          Cnn
          )2=
          Cn2n

          利用上述方法,化簡(jiǎn)(
          C02n
          )2-(
          C12n
          )2+(
          C22n
          )2-(
          C32n
          )2+…+(
          C2n2n
          )2
          =______.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案